/* * Calculation of chains for A5/1 rainbow table cracking. * * * Loosely based on: A pedagogical implementation of A5/1. * * Copyright (C) 1998-1999: Marc Briceno, Ian Goldberg, and David Wagner * * See accompanying file A5.1.c for original version and full copyright * * * Modified and optimized for running on CUDA. * * Copyright (C) 2009: Ingo Albrecht * */ // XXX: Undefine for 64bit platform. You will also have to fix up printfs. #define BITSIZE_32 #include #include #include #include #include /* Masks for the three shift registers */ #define R1MASK 0x07FFFF /* 19 bits, numbered 0..18 */ #define R2MASK 0x3FFFFF /* 22 bits, numbered 0..21 */ #define R3MASK 0x7FFFFF /* 23 bits, numbered 0..22 */ /* Middle bit of each of the three shift registers, for clock control */ #define R1MID 0x000100 /* bit 8 */ #define R2MID 0x000400 /* bit 10 */ #define R3MID 0x000400 /* bit 10 */ /* Feedback taps, for clocking the shift registers. */ #define R1TAPS 0x072000 /* bits 18,17,16,13 */ #define R2TAPS 0x300000 /* bits 21,20 */ #define R3TAPS 0x700080 /* bits 22,21,20,7 */ /* Output taps, for output generation */ #define R1OUT 0x040000 /* bit 18 (the high bit) */ #define R2OUT 0x200000 /* bit 21 (the high bit) */ #define R3OUT 0x400000 /* bit 22 (the high bit) */ typedef unsigned char byte; #ifdef BITSIZE_32 typedef unsigned long uint32; typedef unsigned long long uint64; #else typedef unsigned int uint32; typedef unsigned long uint64; #endif typedef unsigned int bit; __device__ bit parity32(uint32 x) { x ^= x>>16; x ^= x>>8; x ^= x>>4; x ^= x>>2; x ^= x>>1; return x&1; } __device__ uint32 clockone(uint32 reg, uint32 mask, uint32 taps) { uint32 t = reg & taps; reg = (reg << 1) & mask; reg |= parity32(t); return reg; } __device__ bit majority(uint32 R1, uint32 R2, uint32 R3) { int sum; sum = ((R1&R1MID) >> 8) + ((R2&R2MID) >> 10) + ((R3&R3MID) >> 10); if (sum >= 2) return 1; else return 0; } __device__ bit getbit(uint32 R1, uint32 R2, uint32 R3) { return ((R1&R1OUT) >> 18) ^ ((R2&R2OUT) >> 21) ^ ((R3&R3OUT) >> 22); } __device__ uint64 calculate_link (uint64 input, uint32 count) { uint64 result; int i; /* Reduction function. */ uint32 R1 = ((input >> (22 + 23))^count) & R1MASK; uint32 R2 = ((input >> 23)^count) & R2MASK; uint32 R3 = (input^count) & R3MASK; result = getbit(R1, R2, R3); for(i=1;i<64;i++) { // Yes, virginia, we only need to clock 63 times for 64 bits of output // clock() bit maj = majority(R1, R2, R3); uint32 T1 = clockone(R1, R1MASK, R1TAPS); uint32 T2 = clockone(R2, R2MASK, R2TAPS); uint32 T3 = clockone(R3, R3MASK, R3TAPS); if (((R1&R1MID)!=0) == maj) R1 = T1; if (((R2&R2MID)!=0) == maj) R2 = T2; if (((R3&R3MID)!=0) == maj) R3 = T3; result = (result << 1)| getbit(R1, R2, R3); } return result; } __global__ void crunch(uint64* results, uint32 index) { uint32 tid = blockIdx.x * blockDim.x + threadIdx.x; uint64 state = results[tid]; uint32 i; for(i = 0; i < OPERATIONS_PER_RUN; i++) { state = calculate_link(state, index - i); } results[tid] = state; }