/* -*- c++ -*- */ /* * @file * @author Piotr Krysik * @section LICENSE * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef INCLUDED_GSM_RECEIVER_CF_H #define INCLUDED_GSM_RECEIVER_CF_H #include #include #include #include #include #include #include #include //TODO: remember to remove this line in the future! #include "GSML1FEC.h" //!! #include //!! #include //!! #define N_TCH_DECODER 7 /* for TS1..TS7 */ class gsm_receiver_cf; typedef boost::shared_ptr gsm_receiver_cf_sptr; typedef std::vector vector_complex; gsm_receiver_cf_sptr gsm_make_receiver_cf(gr_feval_dd *tuner, gr_feval_dd *synchronizer, int osr, std::string key, std::string configuration); /** GSM Receiver GNU Radio block * * GSM Receiver class supports frequency correction, synchronisation and * MLSE (Maximum Likelihood Sequence Estimation) estimation of synchronisation * bursts and normal bursts. * \ingroup block */ class gsm_receiver_cf : public gr_block { private: std::map d_hex_to_int; FILE * d_speech_file; //!! uint8_t d_KC[8]; //!! GSM::TCHFACCHL1Decoder *d_tch_decoder[N_TCH_DECODER]; //!! bool d_trace_sch; enum { TM_NONE, TM_SPEECH_FR, TM_SPEECH_EFR, } d_tch_mode; /**@name Configuration of the receiver */ //@{ const int d_OSR; ///< oversampling ratio const int d_chan_imp_length; ///< channel impulse length //@} gr_complex d_sch_training_seq[N_SYNC_BITS]; /// d_freq_offset_vals; /**@name Identifiers of the BTS extracted from the SCH burst */ //@{ int d_ncc; ///< network color code int d_bcc; ///< base station color code //@} /**@name Internal state of the gsm receiver */ //@{ enum states { first_fcch_search, next_fcch_search, sch_search, // synchronization search part synchronized // receiver is synchronized in this state } d_state; //@} /**@name Variables which make internal state in the "synchronized" state */ //@{ burst_counter d_burst_nr; ///< frame number and timeslot number channel_configuration d_channel_conf; ///< mapping of burst_counter to burst_type //@} unsigned d_failed_sch; ///< number of subsequent erroneous SCH bursts // GSM Stack GS_CTX d_gs_ctx;//TODO: remove it! it'a not right place for a decoder friend gsm_receiver_cf_sptr gsm_make_receiver_cf(gr_feval_dd *tuner, gr_feval_dd *synchronizer, int osr, std::string key, std::string configuration); gsm_receiver_cf(gr_feval_dd *tuner, gr_feval_dd *synchronizer, int osr, std::string key, std::string configuration); /** Function whis is used to search a FCCH burst and to compute frequency offset before * "synchronized" state of the receiver * * TODO: Describe the FCCH search algorithm in the documentation * @param input vector with input signal * @param nitems number of samples in the input vector * @return */ bool find_fcch_burst(const gr_complex *input, const int nitems); /** Computes frequency offset from FCCH burst samples * * @param input vector with input samples * @param first_sample number of the first sample of the FCCH busrt * @param last_sample number of the last sample of the FCCH busrt * @return frequency offset */ double compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample); /** Calls d_tuner's method to set frequency offset from Python level * * @param freq_offset absolute frequency offset of the received signal */ void set_frequency(double freq_offset); /** Computes angle between two complex numbers * * @param val1 first complex number * @param val2 second complex number * @return */ inline float compute_phase_diff(gr_complex val1, gr_complex val2); /** Function whis is used to get near to SCH burst * * @param nitems number of samples in the gsm_receiver's buffer * @return true if SCH burst is near, false otherwise */ bool reach_sch_burst(const int nitems); /** Extracts channel impulse response from a SCH burst and computes first sample number of this burst * * @param input vector with input samples * @param chan_imp_resp complex vector where channel impulse response will be stored * @return number of first sample of the burst */ int get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp); /** MLSE detection of a burst bits * * Detects bits of burst using viterbi algorithm. * @param input vector with input samples * @param chan_imp_resp vector with the channel impulse response * @param burst_start number of the first sample of the burst * @param output_binary vector with output bits */ void detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary); /** Encodes differentially input bits and maps them into MSK states * * @param input vector with input bits * @param nitems number of samples in the "input" vector * @param gmsk_output bits mapped into MSK states * @param start_point first state */ void gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point); /** Correlates MSK mapped sequence with input signal * * @param sequence MKS mapped sequence * @param length length of the sequence * @param input_signal vector with input samples * @return correlation value */ gr_complex correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input); /** Computes autocorrelation of input vector for positive arguments * * @param input vector with input samples * @param out output vector * @param nitems length of the input vector */ inline void autocorrelation(const gr_complex * input, gr_complex * out, int nitems); /** Filters input signal through channel impulse response * * @param input vector with input samples * @param nitems number of samples to pass through filter * @param filter filter taps - channel impulse response * @param filter_length nember of filter taps * @param output vector with filtered samples */ inline void mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output); /** Extracts channel impulse response from a normal burst and computes first sample number of this burst * * @param input vector with input samples * @param chan_imp_resp complex vector where channel impulse response will be stored * @param search_range possible absolute offset of a channel impulse response start * @param bcc base station color code - number of a training sequence * @return first sample number of normal burst */ int get_norm_chan_imp_resp(const gr_complex * input, gr_complex * chan_imp_resp, int bcc); /** * */ void read_key(std::string key); /** * */ void read_configuration(std::string configuration); /** * */ void process_normal_burst(burst_counter burst_nr, const unsigned char * burst_binary, bool first_burst); /** * */ void configure_receiver(); public: ~gsm_receiver_cf(); void forecast(int noutput_items, gr_vector_int &ninput_items_required); int general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items); }; #endif /* INCLUDED_GSM_RECEIVER_CF_H */