/* -*- c++ -*- */ /* * Copyright 2004 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #define FCCH_BUFFER_SIZE (FCCH_HITS_NEEDED) #define SYNC_SEARCH_RANGE 40 typedef std::list list_float; typedef std::vector vector_float; typedef boost::circular_buffer circular_buffer_float; gsm_receiver_cf_sptr gsm_make_receiver_cf(gr_feval_dd *tuner, int osr) { return gsm_receiver_cf_sptr(new gsm_receiver_cf(tuner, osr)); } static const int MIN_IN = 1; // mininum number of input streams static const int MAX_IN = 1; // maximum number of input streams static const int MIN_OUT = 0; // minimum number of output streams static const int MAX_OUT = 1; // maximum number of output streams /* * The private constructor */ gsm_receiver_cf::gsm_receiver_cf(gr_feval_dd *tuner, int osr) : gr_block("gsm_receiver", gr_make_io_signature(MIN_IN, MAX_IN, sizeof(gr_complex)), gr_make_io_signature(MIN_OUT, MAX_OUT, 142 * sizeof(float))), d_OSR(osr), d_tuner(tuner), d_counter(0), d_fcch_start_pos(0), d_freq_offset(0), d_state(first_fcch_search), d_fcch_count(0), //!! d_x_temp(0),//!! d_x2_temp(0)//!! { gmsk_mapper(SYNC_BITS, d_sch_training_seq, N_SYNC_BITS); } /* * Virtual destructor. */ gsm_receiver_cf::~gsm_receiver_cf() { } void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &ninput_items_required) { ninput_items_required[0] = noutput_items * (TS_BITS + 2 * SAFETY_MARGIN) * d_OSR; } int gsm_receiver_cf::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *in = (const gr_complex *) input_items[0]; float *out = (float *) output_items[0]; int produced_out = 0; float prev_freq_offset; switch (d_state) { case first_fcch_search: if (find_fcch_burst(in, ninput_items[0])) { set_frequency(d_freq_offset); produced_out = 0; d_state = next_fcch_search; } else { produced_out = 0; d_state = first_fcch_search; } break; case next_fcch_search: prev_freq_offset = d_freq_offset; if (find_fcch_burst(in, ninput_items[0])) { if (abs(d_freq_offset) > 100) { float mean_freq_offset = (prev_freq_offset + d_freq_offset) / 2; set_frequency(d_freq_offset); } produced_out = 0; d_state = sch_search; } else { produced_out = 0; d_state = next_fcch_search; } break; case sch_search: if (find_sch_burst(in, ninput_items[0], out)) { // d_state = read_bcch; d_state = next_fcch_search;//read_bcch; } else { d_state = sch_search; } break; case read_bcch: consume_each(ninput_items[0]); break; } return produced_out; } bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems) { circular_buffer_float phase_diff_buffer(FCCH_BUFFER_SIZE * d_OSR); float phase_diff = 0; gr_complex conjprod; int hit_count = 0; int miss_count = 0; int start_pos = -1; float min_phase_diff; float max_phase_diff; float lowest_max_min_diff = 99999; int to_consume = 0; int sample_number = 0; bool end = false; bool result = false; // float mean=0, phase_offset=0, freq_offset=0; circular_buffer_float::iterator buffer_iter; enum states { init, search, found_something, fcch_found, search_fail } fcch_search_state; fcch_search_state = init; while (!end) { switch (fcch_search_state) { case init: hit_count = 0; miss_count = 0; start_pos = -1; lowest_max_min_diff = 99999; phase_diff_buffer.clear(); fcch_search_state = search; break; case search: sample_number++; if (sample_number > nitems - FCCH_BUFFER_SIZE * d_OSR) { to_consume = sample_number; fcch_search_state = search_fail; } else { phase_diff = compute_phase_diff(in[sample_number], in[sample_number-1]); if (phase_diff > 0) { to_consume = sample_number; fcch_search_state = found_something; } else { fcch_search_state = search; } } break; case found_something: if (phase_diff > 0) { hit_count++; } else { miss_count++; } if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) { fcch_search_state = init; //DCOUT("hit_count: " << hit_count << " miss_count: " << miss_count << " d_counter: " << d_counter); continue; } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) { fcch_search_state = fcch_found; continue; } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) { //find difference between minimal and maximal element in the buffer //for FCCH this value should be low //this part is searching for a region where this value is lowest min_phase_diff = *(min_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); max_phase_diff = *(max_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); if (lowest_max_min_diff > max_phase_diff - min_phase_diff) { lowest_max_min_diff = max_phase_diff - min_phase_diff; start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; d_best_sum = 0; for (buffer_iter = phase_diff_buffer.begin(); buffer_iter != (phase_diff_buffer.end()); buffer_iter++) { d_best_sum += *buffer_iter - (M_PI / 2) / d_OSR; } } } sample_number++; if (sample_number >= nitems) { fcch_search_state = search_fail; continue; } phase_diff = compute_phase_diff(in[sample_number], in[sample_number-1]); // std::cout << phase_diff << "\n"; phase_diff_buffer.push_back(phase_diff); fcch_search_state = found_something; break; case fcch_found: DCOUT("znalezione fcch na pozycji" << d_counter + start_pos); to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; // mean = d_best_sum / FCCH_HITS_NEEDED; // phase_offset = mean - (M_PI / 2); // freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); d_fcch_start_pos = d_counter + start_pos; compute_freq_offset(); end = true; result = true; break; case search_fail: end = true; result = false; break; } } d_counter += to_consume; consume_each(to_consume); return result; } double gsm_receiver_cf::compute_freq_offset() { float phase_offset, freq_offset; phase_offset = d_best_sum / FCCH_HITS_NEEDED; freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); d_freq_offset -= freq_offset; d_fcch_count++; d_x_temp += freq_offset; d_x2_temp += freq_offset * freq_offset; d_mean = d_x_temp / d_fcch_count; DCOUT("freq_offset: " << freq_offset );//" d_best_sum: " << d_best_sum // DCOUT("wariancja: " << sqrt((d_x2_temp / d_fcch_count - d_mean * d_mean)) << " fcch_count:" << d_fcch_count << " d_mean: " << d_mean); return freq_offset; } void gsm_receiver_cf::set_frequency(double freq_offset) { d_tuner->calleval(freq_offset); } inline float gsm_receiver_cf::compute_phase_diff(gr_complex val1, gr_complex val2) { gr_complex conjprod = val1 * conj(val2); return gr_fast_atan2f(imag(conjprod), real(conjprod)); } bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , float *out) { // int sample_number = 0; int to_consume = 0; bool end = false; bool result = false; int sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR; vector_complex correlation_buffer; vector_float power_buffer; vector_float window_energy_buffer; int strongest_window_nr; int chan_imp_resp_center; float max_correlation = 0; enum states { start, reach_sch, find_sch_start, search_not_finished, sch_found } sch_search_state; sch_search_state = start; //!!!! int chan_imp_length = 5; //!!!! gr_complex chan_imp_resp[100]; gr_complex rhh_temp[100]; gr_complex rhh[6]; gr_complex filtered_burst[148]; //!!!! int fn_o; int bsic_o; int burst_start = 0; unsigned int stop_states[2] = {4,12}; float output[BURST_SIZE]; unsigned char output_binary[BURST_SIZE]; float energy = 0; bool loop_end = false; vector_float::iterator iter; while (!end) { switch (sch_search_state) { case start: if (d_counter < sample_nr_near_sch_start) { sch_search_state = reach_sch; } else { sch_search_state = find_sch_start; } break; case reach_sch: if (d_counter + nitems >= sample_nr_near_sch_start) { to_consume = sample_nr_near_sch_start - d_counter; } else { to_consume = nitems; } sch_search_state = search_not_finished; break; case find_sch_start: // DCOUT("find_sch_start d_counter" << d_counter); for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE)*d_OSR; ii++) { to_consume++; gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], &in[ii], N_SYNC_BITS - 10); correlation_buffer.push_back(correlation); // tylko do znalezienia odp imp kanału power_buffer.push_back(pow(abs(correlation), 2)); if (abs(correlation) > 30000 / 54) { // DCOUT("znaleziono środek sch na pozycji: " << ii - SYNC_POS * d_OSR); } } //compute window energies iter = power_buffer.begin(); while (iter != power_buffer.end()) { vector_float::iterator iter_ii = iter; energy = 0; for (int ii = 0; ii < (chan_imp_length)*d_OSR; ii++, iter_ii++) { if (iter_ii == power_buffer.end()) { loop_end = true; break; } energy += (*iter_ii); } // std::cout << "\n"; if (loop_end) { break; } iter++; // std::cout << energy << "\n"; window_energy_buffer.push_back(energy); } strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin(); d_channel_imp_resp.clear(); // std::cout << "# name: h_est\n" ; // std::cout << "# type: complex matrix\n" ; // std::cout << "# rows: 1\n" ; // std::cout << "# columns: " << (chan_imp_length)*d_OSR << "\n"; max_correlation = 0; for (int ii = 0; ii < (chan_imp_length)*d_OSR; ii++) { gr_complex correlation = correlation_buffer[strongest_window_nr + ii]; if (abs(correlation) > max_correlation) { chan_imp_resp_center = ii; max_correlation = abs(correlation); } // std::cout << correlation << " "; d_channel_imp_resp.push_back(correlation); chan_imp_resp[ii] = correlation; } // DCOUT("\nSrodek odp_imp:" << chan_imp_resp_center ); autocorrelation(chan_imp_resp, rhh_temp, chan_imp_length*d_OSR); // std::cout << "\n# name: rhh_temp\n" ; // std::cout << "# type: complex matrix\n" ; // std::cout << "# rows: 1\n" ; // std::cout << "# columns: " << (chan_imp_length)*d_OSR << "\n"; // for (int ii = 0; ii < (chan_imp_length)*d_OSR; ii++) { // std::cout << rhh_temp[ii] << " "; // } // std::cout << "\n# name: Rhh\n" ; // std::cout << "# type: complex matrix\n" ; // std::cout << "# rows: 1\n" ; // std::cout << "# columns: " << (chan_imp_length) << "\n"; for (int ii = 0; ii < (chan_imp_length); ii++) { rhh[ii] = conj(rhh_temp[ii*d_OSR]); // std::cout << rhh[ii] << " "; } // std::cout << "\n# name: normal_burst\n" ; // std::cout << "# type: complex matrix\n" ; // std::cout << "# rows: 1\n" ; // std::cout << "# columns: " << 156*d_OSR << "\n"; burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR; for (int ii = 0; ii < 156*d_OSR; ii++) { gr_complex sample = in[burst_start+ii]; // std::cout << sample << " "; } mafi(&in[burst_start], 148, chan_imp_resp, chan_imp_length*d_OSR, filtered_burst); // std::cout << "\n# name: Y\n" ; // std::cout << "# type: complex matrix\n" ; // std::cout << "# rows: 1\n" ; // std::cout << "# columns: " << 148 << "\n"; for (int ii = 0; ii < 148; ii++) { gr_complex filtered_sample = filtered_burst[ii]; // std::cout << filtered_sample << " "; } viterbi_detector(filtered_burst, 148, rhh, 3, stop_states, 2, output); // printf("# name: output\n# type: matrix\n# rows: 1\n# columns: 148\n"); for(int i=0; i0); // printf(" %d", output_binary[i]); } // printf("\n"); decode_sch(&output_binary[3], &fn_o, &bsic_o); // std::cout << "fn: " << fn_o << " bsic: " << bsic_o << "\n"; // DCOUT("strongest_window_nr: " << strongest_window_nr); sch_search_state = sch_found; break; case search_not_finished: result = false; end = true; break; case sch_found: result = true; end = true; break; } } d_counter += to_consume; consume_each(to_consume); return result; } void gsm_receiver_cf::gmsk_mapper(const int * input, gr_complex * output, int ninput) { gr_complex j = gr_complex(0.0, 1.0); int current_symbol; int encoded_symbol; int previous_symbol = 2 * input[0] - 1; output[0] = gr_complex(1.0, 0.0); for (int i = 1; i < ninput; i++) { //change bits representation to NRZ current_symbol = 2 * input[i] - 1; //differentially encode encoded_symbol = current_symbol * previous_symbol; //and do gmsk mapping output[i] = j * gr_complex(encoded_symbol, 0.0) * output[i-1]; previous_symbol = current_symbol; } } gr_complex gsm_receiver_cf::correlate_sequence(const gr_complex * sequence, const gr_complex * input_signal, int length) { gr_complex result(0.0, 0.0); int sample_number = 0; for (int ii = 0; ii < length; ii++) { sample_number = (ii * d_OSR) ; result += sequence[ii] * conj(input_signal[sample_number]); } result = result/gr_complex(length, 0); return result; } // gr_complex gsm_receiver_cf::compute_energy(const gr_complex * input_signal, int length) // { // float result = 0; // int sample_number = 0; // // for (int ii = 0; ii < length; ii++) { // result += input_signal[(ii * d_OSR)]; // } // // return result; // } // gr_complex gsm_receiver_cf::calc_energy(int window_len){ // // } //oblicza dodatnią część autokorelacji inline void gsm_receiver_cf::autocorrelation(const gr_complex * input, gr_complex * out, int length) { int i, k; for (k = length - 1; k >= 0; k--) { out[k] = gr_complex(0, 0); for (i = k; i < length; i++) { out[k] += input[i] * conj(input[i-k]); } } } //funkcja matched filter inline void gsm_receiver_cf::mafi(const gr_complex * input, int input_length, gr_complex * filter, int filter_length, gr_complex * output) { int ii = 0, n, a; // std::cout << "\nfilter:"; // for(n = 0; n < filter_length; n++) // { // std::cout << filter[n] << " "; // } // std::cout << "\n"; for (n = 0; n < input_length; n++) { a = n * d_OSR; output[n] = 0; ii = 0; while (ii < filter_length) { if ((a + ii) >= input_length*d_OSR) break; // if(n==0) // std::cout << input[a+ii] << " "; output[n] += input[a+ii] * filter[ii]; //!!conj ii++; } output[n] = output[n]*gr_complex(0,-1);//!!nie powinno tego tu być } }