/* -*- c++ -*- */ /* * @file * @author Piotr Krysik * @section LICENSE * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #define SYNC_SEARCH_RANGE 30 #define TRAIN_SEARCH_RANGE 40 //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready void gsm_receiver_cf::process_normal_burst(burst_counter burst_nr, const unsigned char * burst_binary) { if (burst_nr.get_timeslot_nr() == 0) { // printf(" %2d %6x %6x", burst_nr.get_t2(), burst_nr.get_frame_nr(), burst_nr.get_frame_nr_mod()); // for (int i = 0; i < BURST_SIZE ; i++) { // printf(" %d", burst_binary[i]); // } // std::cout << "\n"; // std::cout << " bcc: " << d_bcc << "\n"; GS_process(&d_gs_ctx, TIMESLOT0, 6, &burst_binary[3], burst_nr.get_frame_nr()); } } //TODO: this shouldn't be here also - the same reason void gsm_receiver_cf::configure_receiver() { d_channel_conf.set_multiframe_type(TSC0, multiframe_51); d_channel_conf.set_burst_types(TSC0, TEST_CCH_FRAMES, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), normal_burst); d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst); // d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_26); // d_channel_conf.set_burst_types(TIMESLOT7, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal); } typedef std::list list_float; typedef std::vector vector_float; typedef boost::circular_buffer circular_buffer_float; gsm_receiver_cf_sptr gsm_make_receiver_cf(gr_feval_dd *tuner, gr_feval_dd *synchronizer, int osr) { return gsm_receiver_cf_sptr(new gsm_receiver_cf(tuner, synchronizer, osr)); } static const int MIN_IN = 1; // mininum number of input streams static const int MAX_IN = 1; // maximum number of input streams static const int MIN_OUT = 0; // minimum number of output streams static const int MAX_OUT = 1; // maximum number of output streams /* * The private constructor */ gsm_receiver_cf::gsm_receiver_cf(gr_feval_dd *tuner, gr_feval_dd *synchronizer, int osr) : gr_block("gsm_receiver", gr_make_io_signature(MIN_IN, MAX_IN, sizeof(gr_complex)), gr_make_io_signature(MIN_OUT, MAX_OUT, 142 * sizeof(float))), d_OSR(osr), d_chan_imp_length(CHAN_IMP_RESP_LENGTH), d_tuner(tuner), d_counter(0), d_fcch_start_pos(0), d_freq_offset(0), d_state(first_fcch_search), d_burst_nr(osr), d_failed_sch(0) { int i; gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0)); for (i = 0; i < TRAIN_SEQ_NUM; i++) { gr_complex startpoint; if (i == 6) { //this is nasty hack startpoint = gr_complex(-1.0, 0.0); //if I don't change it here all bits of normal bursts for BTSes with bcc=6 will have negative values } else { startpoint = gr_complex(1.0, 0.0); //I've checked this hack for bcc==0,1,2,3,4,6 } //I don't know what about bcc==5 and 7 yet //TODO:find source of this situation - this is purely mathematical problem I guess gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], startpoint); } /* Initialize GSM Stack */ GS_new(&d_gs_ctx); //TODO: remove it! it's not a right place for a decoder } /* * Virtual destructor. */ gsm_receiver_cf::~gsm_receiver_cf() { } void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &nitems_items_required) { nitems_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR); } int gsm_receiver_cf::general_work(int noutput_items, gr_vector_int &nitems_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *input = (const gr_complex *) input_items[0]; //float *out = (float *) output_items[0]; int produced_out = 0; //how many output elements were produced - this isn't used yet //probably the gsm receiver will be changed into sink so this variable won't be necessary switch (d_state) { //bootstrapping case first_fcch_search: if (find_fcch_burst(input, nitems_items[0])) { //find frequency correction burst in the input buffer set_frequency(d_freq_offset); //if fcch search is successful set frequency offset //produced_out = 0; d_state = next_fcch_search; } else { //produced_out = 0; d_state = first_fcch_search; } break; case next_fcch_search: { //this state is used because it takes some time (a bunch of buffered samples) float prev_freq_offset = d_freq_offset; //before previous set_frequqency cause change if (find_fcch_burst(input, nitems_items[0])) { if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET) { set_frequency(d_freq_offset); //call set_frequncy only frequency offset change is greater than some value } //produced_out = 0; d_state = sch_search; } else { //produced_out = 0; d_state = next_fcch_search; } break; } case sch_search: { vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR); int t1, t2, t3; int burst_start = 0; unsigned char output_binary[BURST_SIZE]; if (reach_sch_burst(nitems_items[0])) { //wait for a SCH burst burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { //decode SCH burst DCOUT("sch burst_start: " << burst_start); DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3); d_burst_nr.set(t1, t2, t3, 0); //set counter of bursts value //configure the receiver - tell him where to find which burst type d_channel_conf.set_multiframe_type(TIMESLOT0, multiframe_51); //in the timeslot nr.0 bursts changes according to t3 counter configure_receiver();//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready d_channel_conf.set_burst_types(TIMESLOT0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst); //tell where to find fcch bursts d_channel_conf.set_burst_types(TIMESLOT0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst); //sch bursts d_channel_conf.set_burst_types(TIMESLOT0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst);//!and maybe normal bursts of the BCCH logical channel d_burst_nr++; consume_each(burst_start + BURST_SIZE * d_OSR); //consume samples up to next guard period d_state = synchronized; } else { d_state = next_fcch_search; //if there is error in the sch burst go back to fcch search phase } } else { d_state = sch_search; } break; } //in this state receiver is synchronized and it processes bursts according to burst type for given burst number case synchronized: { vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR); int burst_start; int offset = 0; int to_consume = 0; unsigned char output_binary[BURST_SIZE]; burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number switch (b_type) { case fcch_burst: { //if it's FCCH burst const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1; const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR - TAIL_BITS * d_OSR; double freq_offset = compute_freq_offset(input, first_sample, last_sample); //extract frequency offset from it d_freq_offset_vals.push_front(freq_offset); if (d_freq_offset_vals.size() >= 10) { double sum = std::accumulate(d_freq_offset_vals.begin(), d_freq_offset_vals.end(), 0); double mean_offset = sum / d_freq_offset_vals.size(); //compute mean d_freq_offset_vals.clear(); if (abs(mean_offset) > FCCH_MAX_FREQ_OFFSET) { d_freq_offset -= mean_offset; //and adjust frequency if it have changed beyond set_frequency(d_freq_offset); //some limit DCOUT("mean_offset: " << mean_offset); DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n"); } } } break; case sch_burst: { //if it's SCH burst int t1, t2, t3, d_ncc, d_bcc; burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //MLSE detection of bits if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { //and decode SCH data // d_burst_nr.set(t1, t2, t3, 0); //but only to check if burst_start value is correct d_failed_sch = 0; DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3); offset = burst_start - floor((GUARD_PERIOD) * d_OSR); //compute offset from burst_start - burst should start after a guard period DCOUT(offset); to_consume += offset; //adjust with offset number of samples to be consumed } else { d_failed_sch++; if (d_failed_sch >= MAX_SCH_ERRORS) { // d_state = next_fcch_search; //TODO: this isn't good, the receiver is going wild when it goes back to next_fcch_search from here // d_freq_offset_vals.clear(); DCOUT("many sch decoding errors"); } } } break; case normal_burst: //if it's normal burst burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TRAIN_SEARCH_RANGE, d_bcc); //get channel impulse response for given training sequence number - d_bcc detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //MLSE detection of bits process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready break; case dummy_or_normal: { burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TRAIN_SEARCH_RANGE, TS_DUMMY); detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); std::vector v(20); std::vector::iterator it; it = std::set_difference(output_binary + TRAIN_POS, output_binary + TRAIN_POS + 16, &train_seq[TS_DUMMY][5], &train_seq[TS_DUMMY][21], v.begin()); int different_bits = (it - v.begin()); if (different_bits > 2) { burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TRAIN_SEARCH_RANGE, d_bcc); detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); if (!output_binary[0] && !output_binary[1] && !output_binary[2]) { process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready } } } case rach_burst: //implementation of this channel isn't possible in current gsm_receiver //it would take some realtime processing, counter of samples from USRP to //stay synchronized with this device and possibility to switch frequency from uplink //to C0 (where sch is) back and forth break; case dummy: //if it's dummy burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TRAIN_SEARCH_RANGE, TS_DUMMY); //read dummy detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); // but as far as I know it's pointless break; case empty: //if it's empty burst break; //do nothing } d_burst_nr++; //go to next burst to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset(); //consume samples of the burst up to next guard period //and add offset which is introduced by //0.25 fractional part of a guard period //burst_number computes this offset //but choice of this class to do this was random consume_each(to_consume); } break; } return produced_out; } bool gsm_receiver_cf::find_fcch_burst(const gr_complex *input, const int nitems) { circular_buffer_float phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find //best match for FCCH burst float phase_diff = 0; gr_complex conjprod; int start_pos = -1; int hit_count = 0; int miss_count = 0; float min_phase_diff; float max_phase_diff; double best_sum = 0; float lowest_max_min_diff = 99999; int to_consume = 0; int sample_number = 0; bool end = false; bool result = false; circular_buffer_float::iterator buffer_iter; /**@name Possible states of FCCH search algorithm*/ //@{ enum states { init, ///< initialize variables search, ///< search for positive samples found_something, ///< search for FCCH and the best position of it fcch_found, ///< when FCCH was found search_fail ///< when there is no FCCH in the input vector } fcch_search_state; //@} fcch_search_state = init; while (!end) { switch (fcch_search_state) { case init: //initialize variables hit_count = 0; miss_count = 0; start_pos = -1; lowest_max_min_diff = 99999; phase_diff_buffer.clear(); fcch_search_state = search; break; case search: // search for positive samples sample_number++; if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR) { //if it isn't possible to find FCCH because //there's too few samples left to look into, to_consume = sample_number; //don't do anything with those samples which are left //and consume only those which were checked fcch_search_state = search_fail; } else { phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]); if (phase_diff > 0) { //if a positive phase difference was found to_consume = sample_number; fcch_search_state = found_something; //switch to state in which searches for FCCH } else { fcch_search_state = search; } } break; case found_something: {// search for FCCH and the best position of it if (phase_diff > 0) { hit_count++; //positive phase differencies increases hits_count } else { miss_count++; //negative increases miss_count } if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) { //if miss_count exceeds limit before hit_count fcch_search_state = init; //go to init continue; } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) { //if hit_count and miss_count exceeds limit then FCCH was found fcch_search_state = fcch_found; continue; } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) { //find difference between minimal and maximal element in the buffer //for FCCH this value should be low //this part is searching for a region where this value is lowest min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); if (lowest_max_min_diff > max_phase_diff - min_phase_diff) { lowest_max_min_diff = max_phase_diff - min_phase_diff; start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos best_sum = 0; for (buffer_iter = phase_diff_buffer.begin(); buffer_iter != (phase_diff_buffer.end()); buffer_iter++) { best_sum += *buffer_iter - (M_PI / 2) / d_OSR; //store best value of phase offset sum } } } sample_number++; if (sample_number >= nitems) { //if there's no single sample left to check fcch_search_state = search_fail;//FCCH search failed continue; } phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]); phase_diff_buffer.push_back(phase_diff); fcch_search_state = found_something; } break; case fcch_found: { DCOUT("fcch found on position: " << d_counter + start_pos); to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst d_fcch_start_pos = d_counter + start_pos; //compute frequency offset double phase_offset = best_sum / FCCH_HITS_NEEDED; double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); d_freq_offset -= freq_offset; DCOUT("freq_offset: " << d_freq_offset); end = true; result = true; break; } case search_fail: end = true; result = false; break; } } d_counter += to_consume; consume_each(to_consume); return result; } double gsm_receiver_cf::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample) { double phase_sum = 0; unsigned ii; for (ii = first_sample; ii < last_sample; ii++) { double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR; phase_sum += phase_diff; } double phase_offset = phase_sum / (last_sample - first_sample); double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); return freq_offset; } void gsm_receiver_cf::set_frequency(double freq_offset) { d_tuner->calleval(freq_offset); } inline float gsm_receiver_cf::compute_phase_diff(gr_complex val1, gr_complex val2) { gr_complex conjprod = val1 * conj(val2); return gr_fast_atan2f(imag(conjprod), real(conjprod)); } bool gsm_receiver_cf::reach_sch_burst(const int nitems) { //it just consumes samples to get near to a SCH burst int to_consume = 0; bool result = false; unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR; //consume samples until d_counter will be equal to sample_nr_near_sch_start if (d_counter < sample_nr_near_sch_start) { if (d_counter + nitems >= sample_nr_near_sch_start) { to_consume = sample_nr_near_sch_start - d_counter; } else { to_consume = nitems; } result = false; } else { to_consume = 0; result = true; } d_counter += to_consume; consume_each(to_consume); return result; } int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp) { vector_complex correlation_buffer; vector_float power_buffer; vector_float window_energy_buffer; int strongest_window_nr; int burst_start = 0; int chan_imp_resp_center = 0; float max_correlation = 0; float energy = 0; for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++) { gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]); correlation_buffer.push_back(correlation); power_buffer.push_back(pow(abs(correlation), 2)); } //compute window energies vector_float::iterator iter = power_buffer.begin(); bool loop_end = false; while (iter != power_buffer.end()) { vector_float::iterator iter_ii = iter; energy = 0; for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++) { if (iter_ii == power_buffer.end()) { loop_end = true; break; } energy += (*iter_ii); } if (loop_end) { break; } iter++; window_energy_buffer.push_back(energy); } strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin(); // d_channel_imp_resp.clear(); max_correlation = 0; for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++) { gr_complex correlation = correlation_buffer[strongest_window_nr + ii]; if (abs(correlation) > max_correlation) { chan_imp_resp_center = ii; max_correlation = abs(correlation); } // d_channel_imp_resp.push_back(correlation); chan_imp_resp[ii] = correlation; } burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR; return burst_start; } void gsm_receiver_cf::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary) { float output[BURST_SIZE]; gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR]; gr_complex rhh[CHAN_IMP_RESP_LENGTH]; gr_complex filtered_burst[BURST_SIZE]; int start_state = 3; unsigned int stop_states[2] = {4, 12}; autocorrelation(chan_imp_resp, rhh_temp, d_chan_imp_length*d_OSR); for (int ii = 0; ii < (d_chan_imp_length); ii++) { rhh[ii] = conj(rhh_temp[ii*d_OSR]); } mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst); viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output); for (int i = 0; i < BURST_SIZE ; i++) { output_binary[i] = (output[i] > 0); } } //TODO consider placing this funtion in a separate class for signal processing void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point) { gr_complex j = gr_complex(0.0, 1.0); int current_symbol; int encoded_symbol; int previous_symbol = 2 * input[0] - 1; gmsk_output[0] = start_point; for (int i = 1; i < nitems; i++) { //change bits representation to NRZ current_symbol = 2 * input[i] - 1; //differentially encode encoded_symbol = current_symbol * previous_symbol; //and do gmsk mapping gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1]; previous_symbol = current_symbol; } } //TODO consider use of some generalized function for correlation and placing it in a separate class for signal processing gr_complex gsm_receiver_cf::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input) { gr_complex result(0.0, 0.0); int sample_number = 0; for (int ii = 0; ii < length; ii++) { sample_number = (ii * d_OSR) ; result += sequence[ii] * conj(input[sample_number]); } result = result / gr_complex(length, 0); return result; } //computes autocorrelation for positive arguments //TODO consider placing this funtion in a separate class for signal processing inline void gsm_receiver_cf::autocorrelation(const gr_complex * input, gr_complex * out, int nitems) { int i, k; for (k = nitems - 1; k >= 0; k--) { out[k] = gr_complex(0, 0); for (i = k; i < nitems; i++) { out[k] += input[i] * conj(input[i-k]); } } } //TODO consider use of some generalized function for filtering and placing it in a separate class for signal processing inline void gsm_receiver_cf::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output) { int ii = 0, n, a; for (n = 0; n < nitems; n++) { a = n * d_OSR; output[n] = 0; ii = 0; while (ii < filter_length) { if ((a + ii) >= nitems*d_OSR) break; output[n] += input[a+ii] * filter[ii]; ii++; } } } //TODO: get_norm_chan_imp_resp is similar to get_sch_chan_imp_resp - consider joining this two functions //TODO: this is place where most errors are introduced and can be corrected by improvements to this fuction //especially computations of strongest_window_nr int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, unsigned search_range, int bcc) { vector_complex correlation_buffer; vector_float power_buffer; vector_float window_energy_buffer; int strongest_window_nr; int burst_start = 0; int chan_imp_resp_center = 0; float max_correlation = 0; float energy = 0; int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR); int search_start_pos = search_center + 1; // int search_start_pos = search_center - d_chan_imp_length * d_OSR; int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR; for (int ii = search_start_pos; ii < search_stop_pos; ii++) { gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]); correlation_buffer.push_back(correlation); power_buffer.push_back(pow(abs(correlation), 2)); } //compute window energies vector_float::iterator iter = power_buffer.begin(); bool loop_end = false; while (iter != power_buffer.end()) { vector_float::iterator iter_ii = iter; energy = 0; for (int ii = 0; ii < (d_chan_imp_length - 2)*d_OSR; ii++, iter_ii++) { // for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++, iter_ii++) { if (iter_ii == power_buffer.end()) { loop_end = true; break; } energy += (*iter_ii); } if (loop_end) { break; } iter++; window_energy_buffer.push_back(energy); } //!why doesn't this work strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin(); strongest_window_nr = 3; //! so I have to override it here max_correlation = 0; for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++) { gr_complex correlation = correlation_buffer[strongest_window_nr + ii]; if (abs(correlation) > max_correlation) { chan_imp_resp_center = ii; max_correlation = abs(correlation); } // d_channel_imp_resp.push_back(correlation); chan_imp_resp[ii] = correlation; } // We want to use the first sample of the impulseresponse, and the // corresponding samples of the received signal. // the variable sync_w should contain the beginning of the used part of // training sequence, which is 3+57+1+6=67 bits into the burst. That is // we have that sync_t16 equals first sample in bit number 67. burst_start = search_start_pos + chan_imp_resp_center + strongest_window_nr - TRAIN_POS * d_OSR; // GMSK modulator introduces ISI - each bit is expanded for 3*Tb // and it's maximum value is in the last bit period, so burst starts // 2*Tb earlier burst_start -= 2 * d_OSR; burst_start += 2; //std::cout << " burst_start: " << burst_start << " center: " << ((float)(search_start_pos + strongest_window_nr + chan_imp_resp_center)) / d_OSR << " stronegest window nr: " << strongest_window_nr << "\n"; return burst_start; }