/* -*- c++ -*- */ /* * Copyright 2004 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #define SAFETY_MARGIN 50 #define BUFFER_SIZE (FCCH_HITS_NEEDED) gsm_receiver_cf_sptr gsm_make_receiver_cf(gr_feval_dd *tuner, int osr) { return gsm_receiver_cf_sptr(new gsm_receiver_cf(tuner, osr)); } static const int MIN_IN = 1; // mininum number of input streams static const int MAX_IN = 1; // maximum number of input streams static const int MIN_OUT = 0; // minimum number of output streams static const int MAX_OUT = 1; // maximum number of output streams /* * The private constructor */ gsm_receiver_cf::gsm_receiver_cf(gr_feval_dd *tuner, int osr) : gr_block("gsm_receiver", gr_make_io_signature(MIN_IN, MAX_IN, sizeof(gr_complex)), gr_make_io_signature(MIN_OUT, MAX_OUT, 142 * sizeof(float))), d_osr(osr), d_tuner(tuner), d_prev_freq_offset(0), d_phase_diff_buffer(BUFFER_SIZE), d_counter(0), d_x_temp(0), d_x2_temp(0), d_fcch_count(0), d_state(fcch_search) { } /* * Virtual destructor. */ gsm_receiver_cf::~gsm_receiver_cf() { } void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &ninput_items_required) { ninput_items_required[0] = noutput_items * TS_BITS; //TODO include oversampling ratio here } int gsm_receiver_cf::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *in = (const gr_complex *) input_items[0]; float *out = (float *) output_items[0]; int produced_out; switch (d_state) { case fcch_search: if (find_fcch_burst(in, ninput_items[0])) { produced_out = 1; d_state = fcch_search; } else { produced_out = 0; d_state = fcch_search; } break; case sch_search: break; } // for (int i = 0; i < TS_BITS; i++) { // out[i] = d_phase_diff_buffer[i+start_pos-USEFUL_BITS]; // } return produced_out; } bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems) { float phase_diff = 0; gr_complex conjprod; int hit_count, miss_count, start_pos; float min_phase_diff, max_phase_diff, lowest_max_min_diff; float sum, best_sum; int to_consume = 0; int i = 0; bool end = false; bool result; circular_buffer_float::iterator buffer_iter; enum states { init, search, found_something, fcch_found, search_fail } fcch_search_state; fcch_search_state = init; while ((!end) && (i < nitems)) { switch (fcch_search_state) { case init: hit_count = 0; miss_count = 0; start_pos = -1; lowest_max_min_diff = 99999; d_phase_diff_buffer.clear(); fcch_search_state = search; break; case search: i++; if (i > nitems - BUFFER_SIZE) { to_consume = i; fcch_search_state = search_fail; } conjprod = in[i] * conj(in[i-1]); phase_diff = gr_fast_atan2f(imag(conjprod), real(conjprod)); if (phase_diff > 0) { // start_pos = i - 1; to_consume = i; fcch_search_state = found_something; } else { fcch_search_state = search; } break; case found_something: if (phase_diff > 0) { hit_count++; } else { miss_count++; } //DCOUT("d_phase_diff_buffer.size(): " << d_phase_diff_buffer.size() << " hit_count: " << hit_count); if ((miss_count >= FCCH_MAX_MISSES) && (hit_count <= FCCH_HITS_NEEDED)) { fcch_search_state = init; continue; } else if ((miss_count >= FCCH_MAX_MISSES) && (hit_count > FCCH_HITS_NEEDED)) { fcch_search_state = fcch_found; continue; } else if ((miss_count < FCCH_MAX_MISSES) && (hit_count > FCCH_HITS_NEEDED)) { //find difference between minimal and maximal element in the buffer //for FCCH this value should be low //this part is searching for a region where this value is lowest min_phase_diff = *(min_element(d_phase_diff_buffer.begin(), d_phase_diff_buffer.end())); max_phase_diff = *(max_element(d_phase_diff_buffer.begin(), d_phase_diff_buffer.end())); if(lowest_max_min_diff > max_phase_diff - min_phase_diff){ lowest_max_min_diff = max_phase_diff - min_phase_diff; start_pos = i - FCCH_HITS_NEEDED; d_best_sum = 0; for (buffer_iter = (d_phase_diff_buffer.begin()); buffer_iter != (d_phase_diff_buffer.end()); buffer_iter++) { d_best_sum += *buffer_iter; } DCOUT(d_best_sum); } } i++; if (i >= nitems) { fcch_search_state = search_fail; continue; } conjprod = in[i] * conj(in[i-1]); phase_diff = gr_fast_atan2f(imag(conjprod), real(conjprod)); d_phase_diff_buffer.push_back(phase_diff); fcch_search_state = found_something; break; case fcch_found: DCOUT("znalezione fcch na pozycji" << d_counter + start_pos); to_consume = start_pos + FCCH_HITS_NEEDED + 1; /* mean = d_best_sum / FCCH_HITS_NEEDED; phase_offset = mean - (M_PI / 2); freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);*/ compute_freq_offset(); end = true; result = true; break; case search_fail: end = true; result = false; break; } } d_counter += to_consume; consume_each(to_consume); return result; } bool find_sch_burst( const gr_complex *in, const int nitems , gr_complex *out); double gsm_receiver_cf::compute_freq_offset() { float mean, phase_offset, freq_offset; DCOUT(" d_phase_diff_buffer.size(): " << d_phase_diff_buffer.size()); mean = d_best_sum / FCCH_HITS_NEEDED; phase_offset = mean - (M_PI / 2); freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); DCOUT("freq_offset: " << freq_offset); d_fcch_count++; d_x_temp += freq_offset; d_x2_temp += freq_offset * freq_offset; d_mean = d_x_temp / d_fcch_count; //d_mean = 0.9 * freq_offset + 0.1 * d_mean; //d_tuner->calleval(freq_offset); d_prev_freq_offset -= freq_offset; DCOUT("wariancja: " << sqrt((d_x2_temp / d_fcch_count - d_mean * d_mean)) << " fcch_count:" << d_fcch_count << " d_mean: " << d_mean); return freq_offset; } void gsm_receiver_cf::set_frequency() { } bool gsm_receiver_cf::find_sch_burst( const gr_complex *in, const int nitems , gr_complex *out) { }