/* -*- c++ -*- */ /* * Copyright 2004 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #define SAFETY_MARGIN 50 #define BUFFER_SIZE (FCCH_HITS_NEEDED) gsm_receiver_cf_sptr gsm_make_receiver_cf(gr_feval_dd *tuner, int osr) { return gsm_receiver_cf_sptr(new gsm_receiver_cf(tuner, osr)); } static const int MIN_IN = 1; // mininum number of input streams static const int MAX_IN = 1; // maximum number of input streams static const int MIN_OUT = 0; // minimum number of output streams static const int MAX_OUT = 1; // maximum number of output streams /* * The private constructor */ gsm_receiver_cf::gsm_receiver_cf(gr_feval_dd *tuner, int osr) : gr_block("gsm_receiver", gr_make_io_signature(MIN_IN, MAX_IN, sizeof(gr_complex)), gr_make_io_signature(MIN_OUT, MAX_OUT, 142 * sizeof(float))), d_OSR(osr), d_tuner(tuner), d_prev_freq_offset(0), d_phase_diff_buffer(BUFFER_SIZE * osr), d_counter(0), d_x_temp(0), d_x2_temp(0), d_fcch_count(0), d_fcch_start_pos(0), d_state(fcch_search) { gmsk_mapper(SYNC_BITS, d_sch_training_seq, N_SYNC_BITS); } /* * Virtual destructor. */ gsm_receiver_cf::~gsm_receiver_cf() { } void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &ninput_items_required) { ninput_items_required[0] = noutput_items * TS_BITS; //TODO include oversampling ratio here } int gsm_receiver_cf::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *in = (const gr_complex *) input_items[0]; float *out = (float *) output_items[0]; int produced_out = 0; switch (d_state) { case fcch_search: if (find_fcch_burst(in, ninput_items[0])) { produced_out = 1; d_state = sch_search; } else { produced_out = 0; d_state = fcch_search; } break; case sch_search: if (find_sch_burst(in, ninput_items[0], out)) { d_state = sch_search; } else { for (int i = 0; i < ninput_items[0] - N_SYNC_BITS; i++) { gr_complex result; d_counter++; int ninput = N_SYNC_BITS - 10; const gr_complex * input_signal = in + i; gr_complex * sequence = &d_sch_training_seq[5]; result = correlation(&d_sch_training_seq[5], in + i, N_SYNC_BITS-10); if (abs(result) > 60000) { std::cout << "Max val: " << abs(result) << " position: " << d_counter - d_fcch_start_pos << std::endl; // // for (int j = 1; j <= 54; j++) { // std::cout << sequence[j-1] << " * " << conj(input_signal[(j * d_OSR)]) << std::endl; // } // // gr_complex result2(0, 0); // // for (int j = 1; j <= 54; j++) { // result2 += sequence[j-1] * conj(input_signal[(j * d_OSR)]); // } // // std::cout << "Spr: " << abs(result2) << std::endl; // // std::cout << std::endl; } // std::cout << "(" << real(in[i]) << "," << imag(in[i]) << ")\n"; // std::cout << "(" << real(result) << "," << imag(result) << ")\n"; } consume_each(ninput_items[0]); d_state = sch_search; } break; } // for (int i = 0; i < TS_BITS; i++) { // out[i] = d_phase_diff_buffer[i+start_pos-USEFUL_BITS]; // } return produced_out; } bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems) { float phase_diff = 0; gr_complex conjprod; int hit_count = 0; int miss_count = 0; int start_pos; float min_phase_diff, max_phase_diff, lowest_max_min_diff; int to_consume = 0; int sample_number = 0; bool end = false; bool result = false; circular_buffer_float::iterator buffer_iter; enum states { init, search, found_something, fcch_found, search_fail } fcch_search_state; fcch_search_state = init; while (!end) { switch (fcch_search_state) { case init: hit_count = 0; miss_count = 0; start_pos = -1; lowest_max_min_diff = 99999; d_phase_diff_buffer.clear(); fcch_search_state = search; break; case search: sample_number++; if (sample_number > nitems - BUFFER_SIZE * d_OSR) { to_consume = sample_number; fcch_search_state = search_fail; } else { conjprod = in[sample_number] * conj(in[sample_number-1]); phase_diff = gr_fast_atan2f(imag(conjprod), real(conjprod)); if (phase_diff > 0) { to_consume = sample_number; fcch_search_state = found_something; } else { fcch_search_state = search; } } break; case found_something: if (phase_diff > 0) { hit_count++; } else { miss_count++; } if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) { fcch_search_state = init; // DCOUT("hit_count: " << hit_count << " miss_count: " << miss_count << " d_counter: " << d_counter); continue; } else if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) { fcch_search_state = fcch_found; continue; } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) { //find difference between minimal and maximal element in the buffer //for FCCH this value should be low //this part is searching for a region where this value is lowest min_phase_diff = *(min_element(d_phase_diff_buffer.begin(), d_phase_diff_buffer.end())); max_phase_diff = *(max_element(d_phase_diff_buffer.begin(), d_phase_diff_buffer.end())); if (lowest_max_min_diff > max_phase_diff - min_phase_diff) { lowest_max_min_diff = max_phase_diff - min_phase_diff; start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; d_best_sum = 0; for (buffer_iter = (d_phase_diff_buffer.begin()); buffer_iter != (d_phase_diff_buffer.end()); buffer_iter++) { d_best_sum += *buffer_iter - (M_PI / 2) / d_OSR; } } } sample_number++; if (sample_number >= nitems) { fcch_search_state = search_fail; continue; } conjprod = in[sample_number] * conj(in[sample_number-1]); phase_diff = gr_fast_atan2f(imag(conjprod), real(conjprod)); d_phase_diff_buffer.push_back(phase_diff); fcch_search_state = found_something; break; case fcch_found: DCOUT("znalezione fcch na pozycji" << d_counter + start_pos); to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; /* mean = d_best_sum / FCCH_HITS_NEEDED; phase_offset = mean - (M_PI / 2); freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);*/ d_fcch_start_pos = d_counter + start_pos; compute_freq_offset(); end = true; result = true; break; case search_fail: end = true; result = false; break; } } // DCOUT("hit_count: " << hit_count << " miss_count: " << miss_count << " d_counter: " << d_counter); d_counter += to_consume; consume_each(to_consume); return result; } double gsm_receiver_cf::compute_freq_offset() { float mean, phase_offset, freq_offset; DCOUT(" d_phase_diff_buffer.size(): " << d_phase_diff_buffer.size()); //mean = d_best_sum / FCCH_HITS_NEEDED; phase_offset = d_best_sum / FCCH_HITS_NEEDED; //phase_offset = mean - ; freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); DCOUT("freq_offset: " << freq_offset << " d_best_sum: " << d_best_sum); d_fcch_count++; d_x_temp += freq_offset; d_x2_temp += freq_offset * freq_offset; d_mean = d_x_temp / d_fcch_count; set_frequency(freq_offset); d_prev_freq_offset -= freq_offset; DCOUT("wariancja: " << sqrt((d_x2_temp / d_fcch_count - d_mean * d_mean)) << " fcch_count:" << d_fcch_count << " d_mean: " << d_mean); return freq_offset; } void gsm_receiver_cf::set_frequency(double freq_offset) { d_tuner->calleval(freq_offset); } bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , float *out) { int sample_number = 0; int to_consume = 0; bool end = false; bool result = false; int sch_start = d_fcch_start_pos + FRAME_BITS * d_OSR; enum states { init, search, sch_found, search_fail } sch_search_state; while (!end) { switch (sch_search_state) { case init: sch_search_state = search_fail; break; case search: if ((sch_start >= d_counter) && (sch_start <= d_counter + nitems)) { DCOUT("sch_start-d_counter: " << sch_start - d_counter); /* for (int i = 0; i < nitems - N_SYNC_BITS; i++) { gr_complex result = correlation(&d_sch_training_seq[5], in + i, N_SYNC_BITS-10); //std::cout << "(" << real(in[i]) << "," << imag(in[i]) << ")\n"; std::cout << "(" << real(result) << "," << imag(result) << ")\n"; } std::cout << std::endl; */ } to_consume = nitems - N_SYNC_BITS; sch_search_state = search_fail; break; case sch_found: end = true; break; case search_fail: end = true; break; } } d_counter += to_consume; // consume_each(to_consume); return result; } void gsm_receiver_cf::gmsk_mapper(const int * input, gr_complex * output, int ninput) { gr_complex j = gr_complex(0.0, 1.0); int current_symbol; int encoded_symbol; int previous_symbol = 2 * input[0] - 1; output[0] = gr_complex(1.0, 0.0); for (int i = 1; i < ninput; i++) { //change bits representation to NRZ current_symbol = 2 * input[i] - 1; //differentially encode encoded_symbol = current_symbol * previous_symbol; //and do gmsk mapping output[i] = j * gr_complex(encoded_symbol, 0.0) * output[i-1]; previous_symbol = current_symbol; } } gr_complex gsm_receiver_cf::correlation(const gr_complex * sequence, const gr_complex * input_signal, int ninput) { gr_complex result(0.0, 0.0); for (int ii = 1; (ii * d_OSR) <= ninput; ii++) { result += sequence[ii-1] * conj(input_signal[(ii * d_OSR)]); } return result; }