/* -*- c++ -*- */ /* * Copyright 2004 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #define FCCH_BUFFER_SIZE (FCCH_HITS_NEEDED) #define SYNC_SEARCH_RANGE 30 #define TRAIN_SEARCH_RANGE 40 //TODO !! - move this methods to some else place // - move it to some else place !! typedef std::list list_float; typedef std::vector vector_float; typedef boost::circular_buffer circular_buffer_float; gsm_receiver_cf_sptr gsm_make_receiver_cf(gr_feval_dd *tuner, int osr) { return gsm_receiver_cf_sptr(new gsm_receiver_cf(tuner, osr)); } static const int MIN_IN = 1; // mininum number of input streams static const int MAX_IN = 1; // maximum number of input streams static const int MIN_OUT = 0; // minimum number of output streams static const int MAX_OUT = 1; // maximum number of output streams /* * The private constructor */ gsm_receiver_cf::gsm_receiver_cf(gr_feval_dd *tuner, int osr) : gr_block("gsm_receiver", gr_make_io_signature(MIN_IN, MAX_IN, sizeof(gr_complex)), gr_make_io_signature(MIN_OUT, MAX_OUT, 142 * sizeof(float))), d_OSR(osr), d_chan_imp_length(CHAN_IMP_RESP_LENGTH), d_tuner(tuner), d_counter(0), d_fcch_start_pos(0), d_freq_offset(0), d_state(first_fcch_search), d_burst_nr(osr) { int i; gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0,-1.0)); for (i = 0; i < TRAIN_SEQ_NUM; i++) { gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], gr_complex(1.0,0.0)); } } /* * Virtual destructor. */ gsm_receiver_cf::~gsm_receiver_cf() { } void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &ninput_items_required) { ninput_items_required[0] = noutput_items * (TS_BITS + 2 * SAFETY_MARGIN) * d_OSR; } int gsm_receiver_cf::general_work(int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *in = (const gr_complex *) input_items[0]; float *out = (float *) output_items[0]; int produced_out = 0; float prev_freq_offset; switch (d_state) { //bootstrapping case first_fcch_search: if (find_fcch_burst(in, ninput_items[0])) { set_frequency(d_freq_offset); produced_out = 0; d_state = next_fcch_search; } else { produced_out = 0; d_state = first_fcch_search; } break; case next_fcch_search: prev_freq_offset = d_freq_offset; if (find_fcch_burst(in, ninput_items[0])) { if (abs(d_freq_offset) > 100) { set_frequency(d_freq_offset); } produced_out = 0; d_state = sch_search; } else { produced_out = 0; d_state = next_fcch_search; } break; case sch_search: { gr_complex chan_imp_resp[CHAN_IMP_RESP_LENGTH*d_OSR]; int t1, t2, t3; int burst_start = 0; unsigned char output_binary[BURST_SIZE]; if (find_sch_burst(in, ninput_items[0], out)) { burst_start = get_sch_chan_imp_resp(in, chan_imp_resp); detect_burst(in, chan_imp_resp, burst_start, output_binary); if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { DCOUT("sch burst_start: " << burst_start); d_burst_nr.set(t1, t2, t3, 0); DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3); d_channel_conf.set_multiframe_type(TSC0, multiframe_51); d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst); d_channel_conf.set_burst_types(TSC0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst); d_channel_conf.set_burst_types(TSC0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst); d_burst_nr++; consume_each(burst_start + BURST_SIZE * d_OSR); d_state = synchronized; } else { d_state = next_fcch_search; } } else { d_state = sch_search; } break; } //in this state receiver is synchronized and it processes bursts according to burst type for given burst number case synchronized: { gr_complex chan_imp_resp[d_chan_imp_length*d_OSR]; burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); int burst_start; int offset = 0; int to_consume = 0; unsigned char output_binary[BURST_SIZE]; switch (b_type) { case fcch_burst: { int ii; int first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1; int last_sample = first_sample + USEFUL_BITS * d_OSR; double phase_sum = 0; for (ii = first_sample; ii < last_sample; ii++) { double phase_diff = compute_phase_diff(in[ii], in[ii-1]) - (M_PI / 2) / d_OSR; phase_sum += phase_diff; } double freq_offset = compute_freq_offset(phase_sum, last_sample - first_sample); if (abs(freq_offset) > FCCH_MAX_FREQ_OFFSET) { d_freq_offset -= freq_offset; set_frequency(d_freq_offset); DCOUT("adjusting frequency, new frequency offset: " << d_freq_offset << "\n"); } } break; case sch_burst: { int t1, t2, t3, d_ncc, d_bcc; burst_start = get_sch_chan_imp_resp(in, chan_imp_resp); detect_burst(in, &d_channel_imp_resp[0], burst_start, output_binary); if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { // d_burst_nr.set(t1, t2, t3, 0); DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3); offset = burst_start - floor((GUARD_PERIOD) * d_OSR); DCOUT(offset); to_consume += offset; } } break; case normal_burst: burst_start = get_norm_chan_imp_resp(in, chan_imp_resp, TRAIN_SEARCH_RANGE); detect_burst(in, &d_channel_imp_resp[0], burst_start, output_binary); // printf("burst = [ "); // // for (int i = 0; i < BURST_SIZE ; i++) { // printf(" %d", output_binary[i]); // } // printf("];\n"); break; case rach_burst: break; case dummy: break; case empty: break; } d_burst_nr++; to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset(); consume_each(to_consume); } break; } return produced_out; } bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems) { circular_buffer_float phase_diff_buffer(FCCH_BUFFER_SIZE * d_OSR); float phase_diff = 0; gr_complex conjprod; int hit_count = 0; int miss_count = 0; int start_pos = -1; float min_phase_diff; float max_phase_diff; double best_sum; float lowest_max_min_diff = 99999; int to_consume = 0; int sample_number = 0; bool end = false; bool result = false; double freq_offset; circular_buffer_float::iterator buffer_iter; enum states { init, search, found_something, fcch_found, search_fail } fcch_search_state; fcch_search_state = init; while (!end) { switch (fcch_search_state) { case init: hit_count = 0; miss_count = 0; start_pos = -1; lowest_max_min_diff = 99999; phase_diff_buffer.clear(); fcch_search_state = search; break; case search: sample_number++; if (sample_number > nitems - FCCH_BUFFER_SIZE * d_OSR) { to_consume = sample_number; fcch_search_state = search_fail; } else { phase_diff = compute_phase_diff(in[sample_number], in[sample_number-1]); if (phase_diff > 0) { to_consume = sample_number; fcch_search_state = found_something; } else { fcch_search_state = search; } } break; case found_something: if (phase_diff > 0) { hit_count++; } else { miss_count++; } if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) { fcch_search_state = init; continue; } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) { fcch_search_state = fcch_found; continue; } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) { //find difference between minimal and maximal element in the buffer //for FCCH this value should be low //this part is searching for a region where this value is lowest min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); if (lowest_max_min_diff > max_phase_diff - min_phase_diff) { lowest_max_min_diff = max_phase_diff - min_phase_diff; start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; best_sum = 0; for (buffer_iter = phase_diff_buffer.begin(); buffer_iter != (phase_diff_buffer.end()); buffer_iter++) { best_sum += *buffer_iter - (M_PI / 2) / d_OSR; } } } sample_number++; if (sample_number >= nitems) { fcch_search_state = search_fail; continue; } phase_diff = compute_phase_diff(in[sample_number], in[sample_number-1]); phase_diff_buffer.push_back(phase_diff); fcch_search_state = found_something; break; case fcch_found: DCOUT("fcch found on position: " << d_counter + start_pos); to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; d_fcch_start_pos = d_counter + start_pos; freq_offset = compute_freq_offset(best_sum, FCCH_HITS_NEEDED); d_freq_offset -= freq_offset; DCOUT("freq_offset: " << d_freq_offset); end = true; result = true; break; case search_fail: end = true; result = false; break; } } d_counter += to_consume; consume_each(to_consume); return result; } double gsm_receiver_cf::compute_freq_offset(double best_sum, unsigned denominator) { float phase_offset, freq_offset; phase_offset = best_sum / denominator; freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); return freq_offset; } void gsm_receiver_cf::set_frequency(double freq_offset) { d_tuner->calleval(freq_offset); } inline float gsm_receiver_cf::compute_phase_diff(gr_complex val1, gr_complex val2) { gr_complex conjprod = val1 * conj(val2); return gr_fast_atan2f(imag(conjprod), real(conjprod)); } bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , float *out) { int to_consume = 0; bool end = false; bool result = false; int sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR; enum states { start, reach_sch, search_not_finished, sch_found } sch_search_state; sch_search_state = start; while (!end) { switch (sch_search_state) { case start: if (d_counter < sample_nr_near_sch_start) { sch_search_state = reach_sch; } else { sch_search_state = sch_found; } break; case reach_sch: if (d_counter + nitems >= sample_nr_near_sch_start) { to_consume = sample_nr_near_sch_start - d_counter; } else { to_consume = nitems; } sch_search_state = search_not_finished; break; case search_not_finished: result = false; end = true; break; case sch_found: to_consume = 0; result = true; end = true; break; } } d_counter += to_consume; consume_each(to_consume); return result; } int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * chan_imp_resp) { vector_complex correlation_buffer; vector_float power_buffer; vector_float window_energy_buffer; int strongest_window_nr; int burst_start = 0; int chan_imp_resp_center; float max_correlation = 0; float energy = 0; for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++) { gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], &in[ii], N_SYNC_BITS - 10); correlation_buffer.push_back(correlation); power_buffer.push_back(pow(abs(correlation), 2)); } //compute window energies vector_float::iterator iter = power_buffer.begin(); bool loop_end = false; while (iter != power_buffer.end()) { vector_float::iterator iter_ii = iter; energy = 0; for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++) { if (iter_ii == power_buffer.end()) { loop_end = true; break; } energy += (*iter_ii); } if (loop_end) { break; } iter++; window_energy_buffer.push_back(energy); } strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin(); d_channel_imp_resp.clear(); max_correlation = 0; for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++) { gr_complex correlation = correlation_buffer[strongest_window_nr + ii]; if (abs(correlation) > max_correlation) { chan_imp_resp_center = ii; max_correlation = abs(correlation); } d_channel_imp_resp.push_back(correlation); chan_imp_resp[ii] = correlation; } burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR; return burst_start; } void gsm_receiver_cf::detect_burst(const gr_complex * in, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary) { float output[BURST_SIZE]; gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR]; gr_complex rhh[CHAN_IMP_RESP_LENGTH]; gr_complex filtered_burst[BURST_SIZE]; int start_state = 3; unsigned int stop_states[2] = {4, 12}; autocorrelation(chan_imp_resp, rhh_temp, d_chan_imp_length*d_OSR); for (int ii = 0; ii < (d_chan_imp_length); ii++) { rhh[ii] = conj(rhh_temp[ii*d_OSR]); } mafi(&in[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst); viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output); for (int i = 0; i < BURST_SIZE ; i++) { output_binary[i] = (output[i] > 0); } } //TODO consider placing this funtion in a separate class for signal processing void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int ninput, gr_complex * gmsk_output, gr_complex start_point) { gr_complex j = gr_complex(0.0, 1.0); int current_symbol; int encoded_symbol; int previous_symbol = 2 * input[0] - 1; gmsk_output[0] = start_point; for (int i = 1; i < ninput; i++) { //change bits representation to NRZ current_symbol = 2 * input[i] - 1; //differentially encode encoded_symbol = current_symbol * previous_symbol; //and do gmsk mapping gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1]; previous_symbol = current_symbol; } } //TODO consider use of some generalized function for correlation and placing it in a separate class for signal processing gr_complex gsm_receiver_cf::correlate_sequence(const gr_complex * sequence, const gr_complex * input_signal, int length) { gr_complex result(0.0, 0.0); int sample_number = 0; for (int ii = 0; ii < length; ii++) { sample_number = (ii * d_OSR) ; result += sequence[ii] * conj(input_signal[sample_number]); } result = result / gr_complex(length, 0); return result; } //computes autocorrelation for positive values //TODO consider placing this funtion in a separate class for signal processing inline void gsm_receiver_cf::autocorrelation(const gr_complex * input, gr_complex * out, int length) { int i, k; for (k = length - 1; k >= 0; k--) { out[k] = gr_complex(0, 0); for (i = k; i < length; i++) { out[k] += input[i] * conj(input[i-k]); } } } //TODO consider use of some generalized function for filtering and placing it in a separate class for signal processing //funkcja matched filter inline void gsm_receiver_cf::mafi(const gr_complex * input, int input_length, gr_complex * filter, int filter_length, gr_complex * output) { int ii = 0, n, a; for (n = 0; n < input_length; n++) { a = n * d_OSR; output[n] = 0; ii = 0; while (ii < filter_length) { if ((a + ii) >= input_length*d_OSR) break; output[n] += input[a+ii] * filter[ii]; ii++; } } } int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *in, gr_complex * chan_imp_resp, unsigned search_range) { vector_complex correlation_buffer; vector_float power_buffer; vector_float window_energy_buffer; int strongest_window_nr; int burst_start = 0; int chan_imp_resp_center; float max_correlation = 0; float energy = 0; int search_start_pos = floor((TRAIN_POS + GUARD_PERIOD) * d_OSR); int search_stop_pos = search_start_pos + search_range * d_OSR; for (int ii = search_start_pos; ii < search_stop_pos; ii++) { gr_complex correlation = correlate_sequence(&d_norm_training_seq[d_bcc][5], &in[ii], N_TRAIN_BITS - 10); correlation_buffer.push_back(correlation); power_buffer.push_back(pow(abs(correlation), 2)); } //compute window energies vector_float::iterator iter = power_buffer.begin(); bool loop_end = false; while (iter != power_buffer.end()) { vector_float::iterator iter_ii = iter; energy = 0; for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++, iter_ii++) { if (iter_ii == power_buffer.end()) { loop_end = true; break; } energy += (*iter_ii); } if (loop_end) { break; } iter++; window_energy_buffer.push_back(energy); } strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin(); d_channel_imp_resp.clear(); strongest_window_nr = 36; max_correlation = 0; for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++) { gr_complex correlation = correlation_buffer[strongest_window_nr + ii]; if (abs(correlation) > max_correlation) { chan_imp_resp_center = ii; max_correlation = abs(correlation); } d_channel_imp_resp.push_back(correlation); chan_imp_resp[ii] = correlation; } std::cout << "center: " << strongest_window_nr + chan_imp_resp_center << " stronegest window nr: " << strongest_window_nr << "\n"; burst_start = search_start_pos + strongest_window_nr + chan_imp_resp_center - 66 * d_OSR - 2 * d_OSR + 2; return burst_start; }