
GPL Workshop
How to (not?) use Free Software

by

Harald Welte <hwelte@hmw-consulting.de>

How to (not) use GPL Software

 Contents

 About the speaker
 Ideas / Goals of the GPL
 The GNU GPL Revisited
 Complete Source Code
 Derivative Works
 Collective Works
 GPL and Embedded Systems
 The biggest GPL Myths
 Thanks

How to (not) use GPL Software

 Introduction

 Who is speaking to you?

 an independent Free Software developer
 who earns his living off Free Software since 1997
 who is one of the authors of the Linux kernel firewall system called

netfilter/iptables
 who has started gpl-violations.org to enforce license compliance
 who IS NOT A LAWYER

How to (not) use GPL Software

 Disclaimer

 Legal Disclaimer

 All information presented here is provided on an as-is basis
 There is no warranty for correctness of legal information
 The author is not a lawyer
 This does not comprise legal advise
 The authors’ experience is limited to German copyright law

The GNU GPL Revisited

 Ideas and Goals of the GNU GPL

 Free Software
 Software that has fundamental freedoms:
 to use it for any purpose
 to "help your neighbour" (i.e. make copies)
 to study it’s functionality (reading source code)
 to fix it myself (make modifications and run them)

 Copyleft
 Is the legal idea to
 exercising copyright to grant the above freedoms
 assure that nobody can take away the freedom

 The GNU General Public License
 Is a legal instrument to apply they copyleft idea on software

The GNU GPL Revisited

 The GNU GPL Revisited

 Revisiting the GNU General Public License

 Regulates distribution of copyrighted code, not usage
 Allows distribution of source code and modified source code
 The license itself is mentioned
 A copy of the license accompanies every copy
 Allows distribution of binaries or modified binaries, if
 The license itself is mentioned
 A copy of the license accompanies every copy
 The complete source code is either included with the copy (alternatively a written

offer to send the source code on request to any 3rd party)

The GNU GPL Revisited

 Complete Source Code

 "... complete source code means all the source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable."

 For standard C-language programs, this means:
 Source Code
 Makefiles
 compile-time Configuration (such as kernel .config)

 General Rule:
 Intent of License is to enable user to run modified versions of the program. They

need to be enabled to do so.

The GNU GPL Revisited

 Derivative Works

 What is a derivative work?
 Not dependent on any particular kind of technology (static/dynamic linking,

dlopen, whatever)
 Even while the modification can itself be a copyrightable work, the combination

with GPL-licensed code is subject to GPL.
 As soon as code is written for a specific non-standard API (such as the iptables

plugin API), there is significant indication for a derivative work
 This position has been successfully enforced out-of-court with two Vendors so

far (iptables modules/plugins).

The GNU GPL Revisited

 Derivative Works

 Binary-only kernel modules
 In-kernel proprietary code (binary kernel modules) are hard to claim GPL

compliant
 Case-by-case analysis required, as the level of integration into the GPL licensed

kernel code depends on particular case
 IBM is in the process of getting rid of all binary-only kernel modules. There are

exceptions, but they are very clear ones (such as a filesystem port to linux,
where the filesystem code already existed under another OS)

 There is no general acceptance or tolerance to binary-only kernel modules in the
Linux (development) community. Not even Linus himself has ever granted an
exception for such modules!

The GNU GPL Revisited

 Derivative Works

 Glue Code
 Acts as glue layer between GPL licensed code and proprietary code
 Some Vendors think they can avoid the GPL by doing so
 Is definitely not a bullet-proof legal solution, especially when it is clearly visible

that the only purpose of this glue code is to "get rid" of the GPL.

The GNU GPL Revisited

 Derivative Works

 Moral Issues
 Apart from what is legally possible, there are moral issues
 Even if in a particular case there is no legal way to claim a binary-only kernel

module is a derivative work, you might still be acting against the authors’ wishes
 By shipping binary-only kernel modules, you violate the "moral code of conduct"

of the Free Software community
 But it is the work of this very community that enables you to build your product

based on Free Software
 Such action might have long-term detrimental effects on the motivation of FOSS

developers (dissatisfaction, demotivation, ...)

The GNU GPL Revisited

 Collective Works

 "... it is not the intent .. to claim rights or contest your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or collective works ..."

 GPL controls "collective works"

 "... mere aggregation of another work ... with the program on a volume of a storage or distribution medium does not
bring the other work und the scope of this license"

 GPL allows "mere aggregation"
 like a general-porpose GNU/Linux distribution (SuSE, Red Hat, ...)

The GNU GPL Revisited

 GPL And Embedded Systems

 Historical background:
 The GPL was written for userspace programs running on existing operating

systems
 Covering a whole OS (and even userspace programs) is not an ideal match, but

if you read it carefully it still makes sense

 Toolchain:
 "... the source code distributed need not include anything that is normally
 distributed (in either source or binary form) with the major components
 (compiler, kernel, and so on) of the operating system on which the executable
 runs, unless that component itself accompanies the executable."

 Practical case:
 You’ve modified gcc for a specific embedded platform
 Therefore, this gcc is not "normally distributed with the operating system" and you have to distribute it together

with the source code
 gcc itself is covered under GPL, so you need to provide binaries and source code(!)

The GNU GPL Revisited

 GPL And Embedded Systems

 The "Scripts"
 (scripts to control compilation and installation, see earlier slide)
 In case of embedded hardware, the "scripts" include:
 Tools for generating the firmware binary from the source (even if they are technically no ’scripts’)

 Embedded DRM
 Intent of License is to enable user to run modified versions of the program. They

need to be enabled to do so.
 Result: Signing binaries and only accepting signed versions from the bootloader

(without providing the signature key or a possibility to set a new key in the
bootloader) is not acceptable!

The GNU GPL Revisited

 Practical Source Code Offer

 Some Rules
 The "complete corresponding source code" has to be made available
 It has to be made available for each and every object-code version that was

distributed
 If you strip down the source code offer (e.g. remove proprietary source code), try

to see whether the result actually compiles
 If the product is mixed free / proprietary software, consider including the

proprietary parts (as object code) in the "source code package", so the full
firmware image can be rebuilt without having to tear apart an existing image and
ripping out those proprietary programs from there.

The GNU GPL Revisited

 The biggest myths about the GPL

 The biggest myths about the GPL
 The GPL is not enforcible
 Software licensed under GPL has no copyright
 Unmodified distribution does not require source code availability
 The vendor can wait for a source code request (without offering it)

The GNU GPL Revisited

 The most common mistakes

 The most common mistakes
 not even once reading the GPL text and/or the FAQ from the FSF
 not including the GPL license text with the product
 not including a written offer with the product
 not considering that the GPL also applies to software updates
 only providing original source code (e.g. vanilla kernel.org kernel)
 not including the "scripts to control installation"
 only providing off-site hyperlinks to license and/ore source code
 not responding to support requests for source code
 charging rediculously high fees for physical shipping of source

code

The GNU GPL Revisited

 License Compatibility

 There’s lots of Free Software available
 Different Software uses different Licenses:
 Linux: GPL
 glibc: LGPL
 apache: Apache Software License
 Perl: Artistic
 ucd-snmp: BSD

 If you combine (i.e. link) differently-licensed software,
 check license compatibility
 in case of doubt, ask legal person and/or contact software authors
 authors might give you an exception or consider making licenses compatible

The GNU GPL Revisited

 Dual Licensing

 The copyright holder (often the original author) can provide
alternative licensing

 Some projects do this as a business model (reiserfs, MySQL)
 In some projects it’s impossible due to the extremely distributed

copyright (e.g. Linux kernel)
 However, in smaller projects it never hurts to ask whether there

would be interest in providing an alternative (non-copyleft)
licensing

How to (not) use GPL Software

 The End

 Further reading:
 The http://gpl-violations.org/ project
 The Free Software foundation http://www.fsf.org/, http://www.fsf-europe.org/
 The GNU Project http://www.gnu.org/
 The netfilter homepage http://www.netfilter.org/

