
netfilter/iptables training
Nov 05/06/07, 2007

Day 1

by

Harald Welte <laforge@netfilter.org>

netfilter/iptables tutorial

 Contents

 Day 1

 Introduction
 Highly Scalable Linux Network Stack
 Netfilter Hooks
 Packet selection based on IP Tables
 The Connection Tracking Subsystem
 The NAT Subsystem
 Packet Mangling

netfilter/iptables tutorial

 Introduction

 Who is speaking to you?
 an independent Free Software developer
 who earns his living off Free Software since 1997
 who is one of the authors of the Linux kernel firewall system called

netfilter/iptables
 [who can claim to be the first to have enforced the GNU GPL in court]

netfilter/iptables tutorial

 Introduction

 Linux and Networking
 Linux is a true child of the Internet
 Early adopters: ISP’s, Universities
 Lots of work went into a highly scalable network stack
 Not only for client/server, but also for routers
 Features unheared of in other OS’s

netfilter/iptables tutorial

 Introduction

 Did you know, that a stock 2.6.x linux kernel can provide

 a stateful packet filter ?
 fully symmetric NA(P)T ?
 policy routing ?
 QoS / traffic shaping ?
 IPv6 firewalling ?
 packet filtering, NA(P)T on a bridge ?
 layer 2 (mac) address translation ?
 packet forwarding rates of up to 2.1Mpps ?

netfilter/iptables tutorial

 Introduction

 Why did we need netfilter/iptables?
 Because ipchains...

 has no infrastructure for passing packets to userspace
 makes transparent proxying extremely difficult
 has interface address dependent Packet filter rules
 has Masquerading implemented as part of packet filtering
 code is too complex and intermixed with core ipv4 stack
 is neither modular nor extensible
 only barely supports one special case of NAT (masquerading)
 has only stateless packet filtering

netfilter/iptables tutorial

 Introduction

 Who’s behind netfilter/iptables

 The core team
 Paul ’Rusty’ Russel
 co-author of iptables in Linux 2.2

 James Morris
 Marc Boucher
 Harald Welte
 Jozsef Kadlecsik
 Martin Josefsson
 Patrick McHardy

netfilter/iptables tutorial

 Netfilter Hooks

 What is netfilter?

 System of callback functions within network stack
 Callback function to be called for every packet traversing certain point (hook)

within network stack
 Protocol independent framework
 Hooks in layer 3 stacks (IPv4, IPv6, DECnet, ARP)
 Multiple kernel modules can register with each of the hooks

 Traditional packet filtering, NAT, ... is implemented on top of this framework

 Can be used for other stuff interfacing with the core network stack, like DECnet
routing daemon.

netfilter/iptables tutorial

 Netfilter Hooks

 Netfilter architecture in IPv4
 in --->[1]--->[ROUTE]--->[3]--->[4]---> out
 | ^
 | |
 | [ROUTE]
 v |
 [2] [5]
 | ^
 | |
 v |
 1=NF_IP_PRE_ROUTING
 2=NF_IP_LOCAL_IN
 3=NF_IP_FORWARD
 4=NF_IP_POST_ROUTING
 5=NF_IP_LOCAL_OUT

netfilter/iptables tutorial

 Netfilter Hooks

 Netfilter Hooks

 Any kernel module may register a callback function at any of the
hooks

 The module has to return one of the following constants

 NF_ACCEPT	 continue traversal as normal
 NF_DROP		 drop the packet, do not continue
 NF_STOLEN	 I’ve taken over the packet do not continue
 NF_QUEUE	 enqueue packet to userspace
 NF_REPEAT	 call this hook again

netfilter/iptables tutorial

 IP tables

 Packet selection using IP tables

 The kernel provides generic IP tables support

 Each kernel module may create it’s own IP table

 The four major parts of the firewalling subsystem are implemented using IP
tables

 Packet filtering table ’filter’
 NAT table ’nat’
 Packet mangling table ’mangle’
 The ’raw’ table for conntrack exemptions

netfilter/iptables tutorial

 IP Tables

 Managing chains and tables

 An IP table consists out of multiple chains
 A chain consists out of a list of rules
 Every single rule in a chain consists out of
 match[es] (rule executed if all matches true)
 target (what to do if the rule is matched)
 implicit packet and byte counter

 matches and targets can either be builtin or implemented as kernel modules

 The userspace tool iptables is used to control IP tables
 handles all different kinds of IP tables
 supports a plugin/shlib interface for target/match specific options

netfilter/iptables tutorial

 IP Tables

 Basic iptables commands

 To build a complete iptables command, we must specify
 which table to work with
 which chain in this table to use
 an operation (insert, add, delete, modify)
 one or more matches (optional)
 a target

 The syntax is
 iptables -t table -Operation chain -j target match(es)

 Example:
 iptables -t filter -A INPUT -j ACCEPT -p tcp --dport smtp

netfilter/iptables tutorial

 IP Tables

 Matches
 Basic matches
 -p			protocol (tcp/udp/icmp/...)
 -s			source address (ip/mask)
 -d			destination address (ip/mask)
 -i			incoming interface
 -o			outgoing interface

netfilter/iptables tutorial

 IP Tables

 addrtype match
 matches source/destionation address type
 types are UNICAST/LOCAL/BROADCAST/ANYCAST/MULTICAST/...
 ah match
 matches IPSEC AH SPI (range)
 comment match
 always matches, allows user to place comment in rule
 connmark match
 connection marking, see later
 conntrack match
 more extended version of ’state’
 match on timeout, fine-grained state, original tuples
 dscp match
 matches DSCP codepoint (formerly-known as TOS bits)

netfilter/iptables tutorial

 IP Tables

 ecn match
 matches ECN bits of tcp and ip header
 esp match
 matches IPSEC ESP SPI (range)
 hashlimit match
 dynamic limiting
 helper match
 allows matching of conntrack helper name
 iprange match
 match on arbitrary IP address ranges (not a mask)

netfilter/iptables tutorial

 IP Tables

 length match
 match on packet length
 limit
 static rate limiting
 mac
 match on source mac address
 mark
 match on nfmark (fwmark)
 multiport
 match on multiple ports

netfilter/iptables tutorial

 IP Tables

 owner
 match on socket owner (uid, gid, pid, sid, command name)
 physdev
 match underlying device in case of bridge
 pkttype
 match link-layer packet type (unicast,broadcast,multicast)
 realm
 match routing realm
 recent
 see special section below
 tcpmss
 match on TCP maximum segment size

netfilter/iptables tutorial

 IP Tables

 Targets
 very dependent on the particular table

 Table specific targets will be discussed later

 Generic Targets, always available
 ACCEPT		accept packet within chain
 DROP		silently drop packet
 QUEUE		enqueue packet to userspace
 LOG		log packet via syslog
 ULOG		log packet via ulogd
 RETURN		return to previous (calling) chain
 foobar		jump to user defined chain

netfilter/iptables tutorial

 Packet Filtering

 Overview

 Implemented as ’filter’ table
 Registers with three netfilter hooks

 NF_IP_LOCAL_IN (packets destined for the local host)
 NF_IP_FORWARD (packets forwarded by local host)
 NF_IP_LOCAL_OUT (packets from the local host)

 Each of the three hooks has attached one chain (INPUT, FORWARD, OUTPUT)

 Every packet passes exactly one of the three chains. Note that this is very different
compared to the old 2.2.x ipchains behaviour.

netfilter/iptables tutorial

 Packet Filtering

 Targets available within ’filter’ table

 Builtin Targets to be used in filter table
 ACCEPT	accept the packet
 DROP	silently drop the packet
 QUEUE	enqueue packet to userspace
 RETURN	return to previous (calling) chain
 foobar	user defined chain

 Targets implemented as loadable modules
 REJECT		drop the packet but inform sender

netfilter/iptables tutorial

 Connection Tracking Subsystem

 Connection tracking...

 implemented seperately from NAT
 enables stateful filtering
 implementation
 hooks into NF_IP_PRE_ROUTING to track packets
 hooks into NF_IP_POST_ROUTING and NF_IP_LOCAL_IN to see if packet passed filtering rules
 protocol modules (currently TCP/UDP/ICMP/SCTP)
 application helpers currently (FTP,IRC,H.323,talk,SNMP)

netfilter/iptables tutorial

 Connection Tracking Subsystem

 Connection tracking...

 divides packets in the following four categories
 NEW - would establish new connection
 ESTABLISHED - part of already established connection
 RELATED - is related to established connection
 INVALID - (multicast, errors...)

 does _NOT_ filter packets itself
 can be utilized by iptables using the ’state’ match
 is used by NAT Subsystem

netfilter/iptables tutorial

 Connection Tracking Subsystem

 State tracking for TCP is obvious
 TCP inherently stateful
 Two TCP state machines on each end have well-defined behaviour
 Passive tracking of state machines
 In more recent 2.6.x kernels, tracking of TCP window (seq/ack)
 Max idle timeout of fully-established session: 5 days

netfilter/iptables tutorial

 Connection Tracking Subsystem

 State tracking for UDP: How is this possible?
 UDP itself not stateful at all
 However, higher-level protocols mostly match request-reply
 First packet (request) is assumed to be NEW
 First matching reply packet is assumed to confirm connection
 Further packets in either direction refresh timeout
 Timeouts: 30sec unreplied, 180sec confirmed

netfilter/iptables tutorial

 Connection Tracking Subsystem

 State tracking on ICMP: What’s that?
 ICMP Errors (e.g. host/net unreachable, ttl exceeded)
 They can always be categorized as RELATED to other connections

 ICMP request/reply (ECHO REQUEST, INFO REQUEST)
 can be treated like UDP request/reply case

netfilter/iptables tutorial

 Connection Tracking Subsystem

 State tracking on SCTP: What’s SCTP?
 Streaming Control Transfer Protocol
 Linux has SCTP in the network stack, so why should the packet filter not

support it?
 Pretty much like TCP in most cases
 Doesn’t support more advanced features such as failover of an endpoint

netfilter/iptables tutorial

 Connection Tracking Subsystem

 State tracking on other protocols
 ’generic’ protocol: no layer-4 tuple information
 ’gre’ helper in patch-o-matic

 State tracking of higher-layer protocols
 implemented as ’connection tracking helpers’
 currently in-kernel: amanda, ftp, irc, tftp
 currently in patch-o-matic: pptp, h.323, sip, quake, ...
 have to be explicitly loaded (ip_conntrack_*.[k]o)
 work by issuing so-called "expectations"

netfilter/iptables tutorial

 Connection Tracking Subsystem

 Exemptions to connection tracking
 Usually connection tracking is called first in PRE_ROUTING
 Sometimes, filtering is preferred before this conntrack lookup
 Therefore, the "raw" table was introduced

 In some rare cases, one might want to not track certain packets
 The NOTRACK can be used in the "raw" table

netfilter/iptables tutorial

 Connection Tracking Subsystem

 Configuration / Tuning
 module parameter "hashsize"
 number of hash table buckets

 /proc/sys/net/ipv4/ip_conntrack_max
 maximum number of tracked connections

 /proc/sys/net/ipv4/ip_conntrack_buckets (read-only)
 number of hash table buckets

 /proc/net/ip_conntrack
 list of connections

 /proc/net/ip_conntrack_expect
 list of pending expectations

netfilter/iptables tutorial

 Connection Tracking Subsystem

 Configuration / Tuning
 /proc/sys/net/ip_conntrack_log_invalid
 log invalid packets?

 /proc/sys/net/ip_conntrack_tcp_be_liberal
 basically disables window tracking, if "1"

 /proc/sys/net/ip_conntrack_tcp_loose
 how many packets required until sync in case of pickup
 if set to zero, disables pickup

 /proc/sys/net/ip_conntrack_tcp_max_retrans
 maximum number of retransmitted packets without seeing a n ACK

 /proc/sys/net/ip_conntrack_*timeout*
 timeout values of respective protocol states

netfilter/iptables tutorial

 Network Address Translation

 Network Address Translation

 Previous Linux Kernels only implemented one special case of NAT:
Masquerading

 Linux 2.4.x / 2.6.x can do any kind of NAT.
 NAT subsystem implemented on top of netfilter, iptables and conntrack
 Following targets available within ’nat’ Table
 SNAT changes the packet’s source whille passing NF_IP_POST_ROUTING
 DNAT changes the packet’s destination while passing NF_IP_PRE_ROUTING
 MASQUERADE is a special case of SNAT
 REDIRECT is a special case of DNAT
 SAME
 NETMAP

netfilter/iptables tutorial

 Network Address Translation

 Source NAT
 SNAT Example:
 iptables -t nat -A POSTROUTING -j SNAT --to-source 1.2.3.4 -s 10.0.0.0/8

 MASQUERADE Example:
 iptables -t nat -A POSTROUTING -j MASQUERADE -o ppp0

 Destination NAT
 DNAT example
 iptables -t nat -A PREROUTING -j DNAT --to-destination 1.2.3.4:8080 -p tcp --dport 80 -i eth1

 REDIRECT example
 iptables -t nat -A PREROUTING -j REDIRECT --to-port 3128 -i eth1 -p tcp --dport 80

netfilter/iptables tutorial

 Packet Mangling

 Purpose of ’mangle’ table
 packet manipulation except address manipulation

 Integration with netfilter
 ’mangle’ table hooks in all five netfilter hooks
 priority: after conntrack

 Simple example:
 iptables -t mangle -A PREROUTING -j MARK --set-mark 10 -p tcp --dport 80

netfilter/iptables tutorial

 Packet Mangling

 Targets specific to the ’mangle’ table:
 DSCP
 manipulate DSCP field

 ECN
 manipulate ECN bits

 IPV4OPTSSTRIP
 strip IPv4 options

 MARK
 change the nfmark field of the skb

 TCPMSS
 set TCP MSS option

 TOS
 manipulate the TOS bits

 TTL
 set / increase / decrease TTL field

 CLASSIFY
 classify packet (for tc/iproute)

 CONNMARK
 set mark of connection

netfilter/iptables tutorial

 The raw Table

 Purpose of ’raw’ table
 to allow for filtering rules _before_ conntrack
 Targets specific to the ’raw’ table:
 NOTRACK
 don’t do connection tracking

 The table can also be useful for flood protection rules that happen
before traversing the (computational) expensive connection
tracking subsystem.

netfilter/iptables tutorial

 Advanced Netfilter concepts

 Userspace logging
 flexible replacement for old syslog-based logging
 packets to userspace via multicast netlink sockets
 easy-to-use library (libipulog)
 plugin-extensible userspace logging daemon (ulogd)
 Can even be used to directly log into MySQL

 Queuing
 reliable asynchronous packet handling
 packets to userspace via unicast netlink socket
 easy-to-use library (libipq)
 provides Perl bindings
 experimental queue multiplex daemon (ipqmpd)

netfilter/iptables tutorial

 Advanced Netfilter concepts

 Firewalling on a Bridge (ebtables + iptables)
 totally transparent to layer 2 and above
 no attack vector since firewall has no IP address
 even possible to do NAT on the bridge
 or even NAT of MAC addresses

 ipset - Faster matching
 iptables are a linear list of rules
 ipset represents a ’group’ scheme
 Implements different data types for different applications	
 hash table (for random addresses)
 bitmask (for let’s say a /24 network)

netfilter/iptables tutorial

 Advanced Netfilter concepts

 ipv6 packet filtering
 ip6tables almost identical to iptables
 no connection tracking in mainline yet, but patches exist
 ip6_conntrack
 initial copy+paste ’port’ by USAGI
 was not accepted because of code duplication

 nf_conntrack
 generalized connection tracking, supports ipv4 and ipv6
 mutually exclusive with ip_conntrack
 as of now, no ipv4 nat on to of nf_conntrack

netfilter/iptables tutorial

 Thanks

 Thanks to
 the BBS scene, Z-Netz, FIDO, ...
 for heavily increasing my computer usage in 1992

 KNF (http://www.franken.de/)
 for bringing me in touch with the internet as early as 1994
 for providing a playground for technical people
 for telling me about the existance of Linux!

 Alan Cox, Alexey Kuznetsov, David Miller, Andi Kleen
 for implementing (one of?) the world’s best TCP/IP stacks

 Paul ’Rusty’ Russell
 for starting the netfilter/iptables project
 for trusting me to maintain it today

 Astaro AG
 for sponsoring parts of my netfilter work

