
Introduction to the
Linux Development Model
for Hardware Companies

by

Harald Welte <hwelte@hmw-consulting.de>

The Linux Development Model for Hardware Companies

 Introduction

 Who is speaking to you?
 an independent Free Software developer, consultant and trainer
 13 years experience using/deploying and developing for Linux on server and

workstation
 10 years professional experience doing Linux system + kernel level

development
 strong focus on network security and embedded
 expert in Free and Open Source Software (FOSS) copyright and licensing
 digital hardware design, esp. embedded systems
 active developer and contributor to many FOSS projects
 currently lead system architect (hardware + software) for OpenMoko
 thus, a techie, who will therefore not have fancy animated slides ;)

The Linux Development Model for Hardware Companies

 What is Free Software?

 Software that is
 available in source code
 is licensed in a way to allow unlimited distribution
 allows modifications, and distribution of modifications
 is not freeware, but copyrighted work
 subject to license conditions, like any proprietary software
 READ THE LICENSE

 What is Open Source?
 Practically speaking, not much difference
 Remainder of this presentation will use the term FOSS (Free and Open Source

Software)

The Linux Development Model for Hardware Companies

 What is the FOSS Community?

 Diverse
 any individual can contribute
 no formal membership required
 every project has it’s own culture, rules, ...
 International
 the internet boasted FOSS development
 very common to have developers from all continents closely working together	
 Evolutionary
 developers come and go, as their time permits
 projects evolve over time, based on individual contributions

The Linux Development Model for Hardware Companies

 People / Groups involved

 Really depends on size of projects
 Small projects often a one-man show
 Bigger project have groups / subgroups
 Common Terms / Definitions
 Maintainer
 The person who formally maintains a project

 Core Team / Steering Committee
 A group of skilled developers who make important decisions

 Subsystem Maintainer
 Somebody who is responsible for a particular sub-project

 Developer Community
 All developers involved with a project

 User Community
 Users of the software who often share their experience with others

The Linux Development Model for Hardware Companies

 Development Process

 "Rough concensus and running code"
 Decisions made by technically most skilled people
 Reputation based hierarchy
 Direct Communication between developers
 Not driven by size of a target market
 Release early, release often

The Linux Development Model for Hardware Companies

 Motivations

 gaining reputation (like in the scientific community)
 (students) gaining development experience with real-world

software
 solving problems that the author encounters on his computer
 fighting for Free Software as ideology
 working on exciting technology without having to work at

company XYZ
 work in creative environment with skilled people and no managers

;)

The Linux Development Model for Hardware Companies

 FOSS Community likes

 generic solutions
 portable code
 vendor-independent architecture
 clean code (coding style!)
 open standards
 good technical documentation
 raw hardware, no bundle of hardware and software sold as

solution

The Linux Development Model for Hardware Companies

 FOSS Community dislikes

 monopolistic structures
 e.g. intel-centrism
 closed ’industry forums’ with rediculous fees
 e.g. Infiniband, SD Card Association
 standard documents that cost rediculous fees
 NDA’s, if they prevent development of FOSS

The Linux Development Model for Hardware Companies

 Weak Points of FOSS

 When foss is entirely volunteer-driven
 often way behind schedule (if there is any)
 already too late when projects start
 started when there already is a real need
 often a lack of (good) documentation
 programmers write code, not enduser docs...
 strong in infrastructure, weak in applications
 traditionally developers interested in very technical stuff

 Thus, FOSS really improves when organizations/entities get
involved the right way!

The Linux Development Model for Hardware Companies

 Windows driver development model

 MS defines stable APIs and ABIs for drivers and releases SDK (DDK)
 All interfaces are specified by a single entity
 The interface between driver and OS core is designed as binary interface
 Hardware vendors develop drivers for their hardware component
 Hardware vendors compile and package drivers for their hardware component
 Hardware vendors sell bundle of hardware and software driver (object code)

The Linux Development Model for Hardware Companies

 Linux driver development model

 A community-driven process creates in-kernel driver API’s
 Drivers are written against those APIs
 Drivers are submitted to the kernel developes for inclusion into the OS source

tree
 Because all (good) drivers are inside one singe source tree, OS developers can

(and will) refine the APIs whenever apropriate
 There are no stable in-kernel API’s, and especially no stable in-kernel ABI’s
 Linux development community releases kernel source code
 Hardware vendor sells hardware only. The Windows driver CD is unused.

The Linux Development Model for Hardware Companies

 Linux driver development model

 Without proper support from HW vendor, Most hardware drivers are developed
by people inside that community

 sadly most of them have no relation to the HW manufacturer
 even more sadly, many of them have to work without or with insufficient documentation (reverse engineering)

 Good HW vendors understand this and support Linux properly!

 Linux is a big market by now
 Servers
 Embedded devices (est. > 40% of all wifi/dsl router + NAS appliances)
 Increasingly popular on the Desktop

The Linux Development Model for Hardware Companies

 Linux driver development model, bad case
timeline

 Hardware vendor produces and ships hardware
 Users end up getting that hardware without any Linux support
 Somebody will start a driver and inquire about HW docs
 Hardware vendor doesn’t release docs
 If hardware is popular enough, somebody will start reverse engineering and

driver deevlopment
 With some luck, the driver is actually useable or even finished before the HW

product is EOL

The Linux Development Model for Hardware Companies

 Linux driver development model, good case
timeline #1

 Hardware vendor starts Linux driver development for new HW during HW R&D
 Hardware vendor submits Linux driver for review / inclusion into mainline Linux

kernel before HW ships
 User installs HW and has immediate support by current Linux kernel
 Hardware vendor publicly releases HW docs when the product ships, or even

later
 This enables the community to support/integrate the driver with new interfaces
 It also enables the community to support hardware post EOL, at a point where the HW vendor

The Linux Development Model for Hardware Companies

 Linux driver development model, good case
timeline #2

 Hardware vendor releases HW documentation during HW R&D or no later than
the product start shipping

 Somebody in the Linux development community might be interested in writing a
driver

 in his spare time because of technical interest in the HW
 as a paid contractor by the HW vendor

 In such cases it helps if the HW vendor provides free samples to trustworthy
developers

 That driver is very likely to get merged mainline

The Linux Development Model for Hardware Companies

 Why submit your code mainline?

 Quantity-wise, most users use some Linux distribution
 Every version of every distribution ships a different Linux kernel version
 Most end-users are not capable of compiling their own kernel/drives (but way

more than you think!)
 Thus,
 teaming up with one (or even two, three) Linux distributions only addresses a small segment of the user base
 distributing your driver independently (bundled with hardware, ...) in a way that is ready-to-use for end-users is

a ton of work and almost impossible to get right
 the preferred option, with the least overhead for both user and HW vendor is to merge the driver mainline.

The Linux Development Model for Hardware Companies

 How to submit your code mainline?

 The FOSS code quality requirements are _extremely_ high
 It’s not a surprise that Linux is generally considered much more stable than

competitors
 Code needs to be maintainable
 Linux supports old hardware ages beyond their EOL
 Thin of MCA, VLB, Decnet, IPX networking, ...

 So unless you respect the development culture, your code is likely to get
rejected!

 Post your driver at the respective mailing lists
 Release early, release often
 Don’t hesitate to ask for feedback and suggestions if you are not 100% sure

what is the right way to implement a certain feature

The Linux Development Model for Hardware Companies

 What about other FOSS OS’s

 There are quite a number of other non-Linux FOSS OSs, among them
 FreeBSD, OpenBSD, NetBSD, ...

 Those are not as small as you might think
 FreeBSD often used for internet severs (web, mail, ...)
 OpenBSD often used in high-security environments
 NetBSD a little more prominent in embedded

 So how does this affect a HW manufacturer
 In case the OS is used in a targetted market, developing a driver might make sense
 In most cases, open docuentation is all those projects need
 In other cases, dual-licensing a driver (GPL+BSD) makes sense so *BSD can use code from the Linux driver

The Linux Development Model for Hardware Companies

 Techncal differences

 In the MS world, almost all interfaces are MS defined
 In the Linux world, Linux is only the OS kernel
 All other interfaces are specified by their respective projects
 Often there are many alternatives, e.g. for graphical drivers
 X.org project (X11 window server, typical desktop)
 DirectFB project (popular in embedded devices like TV set-top boxes)
 Qt/Embedded (popular in certain proprietary Linux-based mobile phones)

 Every project has it’s own culture, including but not limited to
 coding style
 patch submission guidelines
 software license
 communication methods

The Linux Development Model for Hardware Companies

 Practical Rules

 1. Much more communication
 It’s not a consumer/producer model, but cooperative!
 Before you start implementation, talk to project maintainers
 It’s likely that someone has tried a similar thing before
 It’s likely that project maintainers have already an idea how to proceed with implementation
 Avoid later hazzles when you want your code merged upstream

The Linux Development Model for Hardware Companies

 Practical Rules

 2. Interfaces
 If there is a standard interface, use it
 If insufficient: Don’t invent new interfaces, try to extend existing ones
 If there is an existing interface in a later (e.g. development) release upstream,

backport that interface
 Don’t be afraid to touch API’s if they’re inefficient
 Remember, you have the source and _can_ change them

The Linux Development Model for Hardware Companies

 Practical Rules

 3. Merge your code upstream
 Initially you basically have to create a fork
 Development of upsteram project continues sometimes at high speed
 If you keep it out of tree for too long time, conflicts arise
 Submissions might get rejected in the first round
 Cleanups needed, in coordination with upstream project
 Code will eventually get merged

 No further maintainance needed for synchronization between your contribution
and the ongoing upstream development

 Don’t be surprised if your code won’t be accepted if you didn’t discuss it with
maintainers upfront and they don’t like your implementation

The Linux Development Model for Hardware Companies

 Practical Rules

 4. Write portable code
 don’t assume you’re on 32bit CPU
 don’t assume you’re on little endian
 if you use assembly optimized code, put it in a self-contained module

The Linux Development Model for Hardware Companies

 Practical Rules

 5. Binary-only software will not be accepted
 yes, there are corner cases like FCC regulation on softradios
 but as a general rule of thumb, the community will not consider object code as a

solution to any problem

The Linux Development Model for Hardware Companies

 Practical Rules

 6. Avoid fancy business models
 If you ship the same hardware with two different drivers (half featured and

full-featured), any free software will likely make full features available on that
hardware.

The Linux Development Model for Hardware Companies

 Practical Rules

 7. Show your support for the Community
 By visibly contributing to the project
 discussions
 code
 equipment

 By funding developer meetings
 By making rebated hardware offers to developers
 By contracting / sponsoring / hiring developers from the community

The Linux Development Model for Hardware Companies

 Thanks

 Thanks for your Attention

