
Introduction to the
Linux Coding Style

by

Harald Welte <hwelte@hmw-consulting.de>

The Linux Coding Style

 Introduction

 Who is speaking to you?
 an independent Free Software developer, consultant and trainer
 14 years experience using/deploying and developing for Linux on server and

workstation
 10 years professional experience doing Linux system + kernel level

development
 strong focus on network security and embedded
 expert in Free and Open Source Software (FOSS) copyright and licensing
 digital board-level hardware design, esp. embedded systems
 active developer and contributor to many FOSS projects
 thus, a techie, who will therefore not have fancy animated slides ;)

The Linux Coding Style

 Code Architecture / Style

 What is coding style ?
 It is not just about cosmetics / code format and layout
 It is a fundamental skill of sustainable software engineering
 It is about writing readable, not just executable code
 It is about clearly expressing your thoughts and ideas
 It is about good software architecture

The Linux Coding Style

 Code Architecture

 Why does good code architecture matter ?
 Because Linux runs on 25 CPU architectures
 Because Linux runs on systems with 1 or 512 CPU cores
 Because Linux is a reliable operating system kernel
 Because Linux will support your hardware even after the hardware vendor

doesn’t
 becuase the company is gone
 because the company has lost business interest
 because the original developers are gone

The Linux Coding Style

 Code Architecture

 Linux kernel API’s change
 the kernel constantly gets improved
 the kernel constantly adapts to changes in e.g. hardware

 Use latest kernel API’s
 very often there are old and new API’s in parallel
 old API’s are only to be used by legacy drivrers until they have been converted

to the new API’s
 new drivers using old API’s will not get merged

The Linux Coding Style

 Code Architecture

 Code reuse
 makes software maintainable
 makes software vendor-independent
 increases performance (efficient memory+cache use)
 so please, reuse existing code
 decreases overall R&D effort
 example
 Linux provides one 802.11 stack for all wifi cards
 Linux provides one Bluetooth stack for all bluetoth HCI
 Vendor drivers only implement minimal hardware glue

The Linux Coding Style

 Code Architecture

 Code Structure
 helps code to be readable
 helps code to be maintainable
 means
 functions of reasonable length
 no spaghetti code
 functions with clearly-defined purpose

The Linux Coding Style

 Code Architecture

 Code Portability
 Linux runs on 25 CPU architectures
 some 32bit/64bit
 some cache-coherent, some not
 some with CPU == IO address space, some not
 some little, some big endian
 with different alignment requirements
 with or without SMP

 So please never, ever assume you only care about IA32.

The Linux Coding Style

 Coding Style

 Coding style in a narrow sense
 is how the code actually looks like
 /usr/src/linux/Documentation/CodingStyle

 Why do "cosmetics" matter
 you write code to be read by other developers
 anyone who reads one part of the kernel should be able to read all parts

The Linux Coding Style

 Coding Style

 Indentation
 No multiple statements on one line
 Break long lines to fit 80character terminal width
 Opening/closing braces on same line, except functions
 No unneccessary braces
 Space after keyword, but not after function
 No space inside parenthesis

The Linux Coding Style

 Coding Style

 Centralized exitting of functions
 goto helps
 C89 style comments
 /* */ instead of //
 careful with inlining
 excessive inlining wastes cache
 function return values
 standard case: 0 in success, -ERRNO on error
 volatile is almost always wrong
 see Documentation/volatile-considered-harmful.txt

The Linux Coding Style

 Coding Style

 Naming
 DontUseSturdyCapsLikeInWindows
 keep local variables short
 global symbols with prefix and underscore
 like s3cfb_do_something()

The Linux Coding Style

 Coding Style

 Now, let’s look at some actual code!

Linux mainline contribution

 Why does revision control matter

 because revision control preserves development timeline
 this timeline can be used to
 discover which change caused a regression
 understand why the code was changed when and where
 understand who wrote which part of the code
 keep a clear track of who has copyright on which part
 It is important to keep revision control system clean
 never commit two unrelated changes as one changeset
 never commit without meaningful description/changelog

Linux mainline contribution

 Classic Revision control systems

 RCS (Revison Control System)
 per-file revision control
 used in the ’old days’, no network support
 sometimes still used by sysadmins for local config files
 CVS (Concurrent Versioning System)
 network-enabled version of RCS
 supports checkin/commit of entire trees of files (not atomic)
 revisions are kept per-file
 SVN (Subversion)
 revisions are for the entire tree!
 much faster/better/modern, WebDAV based

Linux mainline contribution

 Distributed Revision control systems

 git
 specifically developed by Linux kernel develoeprs for kernel development
 quite new, but very popular in the Linux world
 based very simple primitives with toolkit on top
 suports local and remote branches
 keeps track of author and committer name/email
 mercurial/hg
 bazaar/bzr
 monotone/mtn
 other systems, not discussed here

Linux mainline contribution

 Working with diff

 the ’diff’ program describes changes between two text files
 most commonly, the ’unified diff’ (diff -u) is used
 the output is human-readable, all developers can read it
 recursive operation for entire trees (diff -r)
 optionally ignore whitespace changes (diff -w)

Linux mainline contribution

 Working with Changesets

 What is a Changeset?
 A changeset is a specific logical change to software source code
 A changeset is usually a patch (unified diff) plus decscription
 A chronologic timeline of changesets is what your revision control system keeps
 Please always specify against which base version you made your

changeset.

 Most of the time patch == changeset == diff

Linux mainline contribution

 Contributing to FOSS projecst

 We never send entire versions of our program around
 We always use changesets (unified diff plus description)
 Distributed development works by sending around changesets by e-mail
 Mailinglists play important role so everyone can keep up-to-date with other

people’s changest
 The project/subsystem maintainer picks changesets from e-mail and applies

them to his tree
 Sometimes, maintainer can ’pull’ changes from contributors’ tree into hist tree

 The project/subsystem maintainer sends ’pull request’ to higher maintainer

Linux mainline contribution

 Lifecycle of a patch

 Lifecycle of a netfilter/iptables patch
 Developer sends patch+description to netfilter-devel list
 Other developers see it and may discuss it
 After some review, a new version is sent to the list
 The netfilter maintainer applies the patch to his tree (netfilter.git)
 At some point, the maintainer sends pull-request to network maintainer
 Network-maintainer pulls the changes into his tree (net-2.6.git)
 At some point, the network maintainer sends pull-request to Linus
 Linus pulls those changes during the next merge window into linux-2.6.git

Linux mainline contribution

 General Rules

 make sure your code is compliant with
Documentation/CodingStyle

 make sure your code is written against the lastest mainline git tree
 sometimes, development against a specific subsystem git tree
 make sure your code passes the ’checkpatch.pl’ script without

errors
 sometimes, warnings are acceptable. errors are never acceptable
 make sure you have read Documentation/SubmittingPatches

Linux mainline contribution

 Don’t do this

 Don’t do this
 reimplement code that already exist in the kernel (e.g. crc32)
 include a protocol stack in your driver
 protocol stacks (SD/MMC, 802.11, bluetooth) are vendor/device independent shared code

 submit an OS independent driver with glue layer for Linux API’s
 submit drivers with support for older kernel API’s (LINUX_VERSION_CODE)
 submit drivers that include firmware in some header file
 rather, use request_firmware() API to load firmware from filesystem

 submit one driver for two completely different chips
 submit two drivers for two chips that are 90% identical
 submit drivers that don’t work with latest linux-2.6.git

Linux mainline contribution

 What’s Signed-off-by ?

 The ’developer certificate of origin’
 If you add that line, you certify that you have
 written the code yourself
 and/or have permission to release it under GPLv2
 The idea is to keep track of who has written code
 Maintainers usually add their signature, too
 See Documentation/SubmittingPatches

Linux mainline contribution

 To which list should I send

 check the linux-2.6/MAINTAINERS file for ’L:’ columns
 or search on the project/subsytem homepagepage
 if no specific list is found, use linux-kernel (lkml)
 for ’merge request’ patches, Cc the maintainer
 search for ’M:
 some list restrict posting to list subscribers, so you first need to

subscribe
 usually there is a web-based interface for subscription
 sometimes you have to use e-mail based method

Linux mainline contribution

 I sent the patch, what next?

 in the worst case, you get no feedback
 if there’s no feedback for one week, re-post and/or
 send private mail to maintainer pointing out no feedback
 in the ’best’ case your code gets merged immediately
 you usually receive e-mail from the maintainer about it
 in the regular case, you get some feedback / change requests
 try to answer to all questions as fast as possible
 try to accomodate change requests as fast as possible
 re-submit after integrating all change requests

Linux mainline contribution

 My patch got merged, what next?

 if you wrote an entire driver and merged it
 you ’own’ the code, i.e. you should maintain it
 you should send bug fixes and updates, one-by-one, as patches
 don’t wait for some "official release" !!!

 it is your responsibility to make sure the code in mainline is synchronized
 you will get Cc’ed by other people who want to change your driver
 i.e. if some API change affects your driver
 i.e. if somebody discovers a bug in your driver
 you should verify the new code works and provide feedback
 always keep the mailinglist in Cc

Linux mainline contribution

 How to use git

 please see the practical demonstration

Linux mainline contribution

 Thanks

 Please share your questions and doubts now!

 Please contact me at any later point, if you have questions

 I’m here to help Samsung understand Linux and Open Source!

 hwelte@hmw-consulting.de

 Thanks for your Attention

