| ntroduction to the
Linux Coding Style

by
Harald Welte <hwelte@hmw-consulting.de>

The Linux Coding Style

| Introduction

Who is speaking to you?
Oan independent Free Software developer, consultant and trainer
014 years experience using/deploying and developing for Linux on server and
workstation

010 years professional experience doing Linux system + kernel level
development

Ostrong focus on network security and embedded

Oexpert in Free and Open Source Software (FOSS) copyright and licensing

Odigital board-level hardware design, esp. embedded systems

Oactive developer and contributor to many FOSS projects

Othus, a techie, who will therefore not have fancy animated slides ;)

The Linux Coding Style

Code Architecture / Style

UWhat is coding style ?
Olt is not just about cosmetics / code format and layout
Olt is a fundamental skill of sustainable software engineering
Olt is about writing readable, not just executable code
Olt is about clearly expressing your thoughts and ideas
Olt is about good software architecture

The Linux Coding Style

| Code Architecture

UWhy does good code architecture matter ?

OBecause Linux runs on 25 CPU architectures
OBecause Linux runs on systems with 1 or 512 CPU cores
OBecause Linux is a reliable operating system kernel

OBecause Linux will support your hardware even after the hardware vendor
doesn’t

>pbecuase the company is gone
>because the company has lost business interest
>pecause the original developers are gone

The Linux Coding Style

| Code Architecture

ULinux kernel API's change

Othe kernel constantly gets improved
Othe kernel constantly adapts to changes in e.g. hardware

OUse latest kernel API's

Overy often there are old and new API’s in parallel

Oold API's are only to be used by legacy drivrers until they have been converted
to the new API’'s

Onew drivers using old API's will not get merged

The Linux Coding Style

Code Architecture

O Code reuse

Omakes software maintainable

Omakes software vendor-independent

Oincreases performance (efficient memory+cache use)
Oso please, reuse existing code

Odecreases overall R&D effort

Oexample

>Linux provides one 802.11 stack for all wifi cards
>Linux provides one Bluetooth stack for all bluetoth HCI
>Vendor drivers only implement minimal hardware glue

The Linux Coding Style

| Code Architecture

OCode Structure

Ohelps code to be readable
Ohelps code to be maintainable

Llmeans
Ofunctions of reasonable length

Ono spaghetti code
Ofunctions with clearly-defined purpose

The Linux Coding Style

| Code Architecture

UCode Portability

OLinux runs on 25 CPU architectures

>some 32bit/64bit

>some cache-coherent, some not

>some with CPU == |0 address space, some not
>some little, some big endian

>with different alignment requirements

>with or without SMP

OSo please never, ever assume you only care about IA32.

The Linux Coding Style

Coding Style

UCoding style in a narrow sense

Ois how the code actually looks like
O/usr/src/linux/Documentation/CodingStyle

OWhy do "cosmetics" matter

Oyou write code to be read by other developers
ganyone who reads one part of the kernel should be able to read all parts

The Linux Coding Style

Coding Style

Ulndentation

LNo multiple statements on one line

UBreak long lines to fit 80character terminal width
UOpening/closing braces on same line, except functions
OONo unneccessary braces

USpace after keyword, but not after function

UNo space inside parenthesis

The Linux Coding Style

Coding Style

UCentralized exitting of functions
Ogoto helps
0C89 style comments
O/f* *[instead of //
Ucareful with inlining
Oexcessive inlining wastes cache
Ufunction return values
Ostandard case: 0 in success, -ERRNO on error
Ovolatile is almost always wrong
Osee Documentation/volatile-considered-harmful.txt

The Linux Coding Style

Coding Style

Naming
ODontUseSturdyCapsLikelnWindows
Ukeep local variables short

Hglobal symbols with prefix and underscore
Olike s3cfb_do_something()

The Linux Coding Style

Coding Style

Now, let’s look at some actual code!

Linux mainline contribution

'Why does revision control matter

Ubecause revision control preserves development timeline
Uthis timeline can be used to

Odiscover which change caused a regression
ounderstand why the code was changed when and where
Ounderstand who wrote which part of the code

Okeep a clear track of who has copyright on which part

Ult is important to keep revision control system clean

Onever commit two unrelated changes as one changeset
Onever commit without meaningful description/changelog

Linux mainline contribution

Classic Revision control systems

URCS (Revison Control System)
Oper-file revision control
Oused in the 'old days’, no network support
Osometimes still used by sysadmins for local config files

UCVS (Concurrent Versioning System)

Onetwork-enabled version of RCS
Osupports checkin/commit of entire trees of files (not atomic)
Orevisions are kept per-file

USVN (Subversion)

Orevisions are for the entire tree!
Omuch faster/better/modern, WebDAYV based

Linux mainline contribution

Distributed Revision control systems

Uit
Ospecifically developed by Linux kernel develoeprs for kernel development
Oquite new, but very popular in the Linux world
Obased very simple primitives with toolkit on top
Osuports local and remote branches
Okeeps track of author and committer name/email

Omercurial/hg
Obazaar/bzr

Omonotone/mtn
Oother systems, not discussed here

Linux mainline contribution

‘Working with diff

Uthe ’diff’ program describes changes between two text files
Umost commonly, the 'unified diff’ (diff -u) is used

Othe output is human-readable, all developers can read it
Orecursive operation for entire trees (diff -r)

Ooptionally ignore whitespace changes (diff -w)

Linux mainline contribution

‘Working with Changesets

UWhat is a Changeset?
OA changeset is a specific logical change to software source code
OA changeset is usually a patch (unified diff) plus decscription
OA chronologic timeline of changesets is what your revision control system keeps
UPlease always specify against which base version you made your
changeset.

OMost of the time patch == changeset == diff

Linux mainline contribution

Contributing to FOSS projecst

OWe never send entire versions of our program around

OWe always use changesets (unified diff plus description)

ODistributed development works by sending around changesets by e-mail

OMailinglists play important role so everyone can keep up-to-date with other
people’s changest

OThe project/subsystem maintainer picks changesets from e-mail and applies
them to his tree

>Sometimes, maintainer can 'pull’ changes from contributors’ tree into hist tree
OThe project/subsystem maintainer sends 'pull request’ to higher maintainer

Linux mainline contribution

Lifecycle of a patch

ULifecycle of a netfilter/iptables patch
ODeveloper sends patch+description to netfilter-devel list
OQOther developers see it and may discuss it
O After some review, a new version is sent to the list
OThe netfilter maintainer applies the patch to his tree (netfilter.git)
O At some point, the maintainer sends pull-request to network maintainer
ONetwork-maintainer pulls the changes into his tree (net-2.6.git)
O At some point, the network maintainer sends pull-request to Linus
OLinus pulls those changes during the next merge window into linux-2.6.qit

Linux mainline contribution

General Rules

Omake sure your code is compliant with
Documentation/CodingStyle

Omake sure your code is written against the lastest mainline git tree
Osometimes, development against a specific subsystem git tree

Umake sure your code passes the 'checkpatch.pl’ script without
errors
Osometimes, warnings are acceptable. errors are never acceptable

Umake sure you have read Documentation/SubmittingPatches

Linux mainline contribution

[DoanothB

ODon’t do this

Oreimplement code that already exist in the kernel (e.g. crc32)

Oinclude a protocol stack in your driver
>protocol stacks (SD/MMC, 802.11, bluetooth) are vendor/device independent shared code
Osubmit an OS independent driver with glue layer for Linux API's

Osubmit drivers with support for older kernel API's (LINUX_ VERSION_CODE)

Osubmit drivers that include firmware in some header file
>rather, use request_firmware() API to load firmware from filesystem
Osubmit one driver for two completely different chips

Osubmit two drivers for two chips that are 90% identical
Osubmit drivers that don’t work with latest linux-2.6.qit

Linux mainline contribution

‘What's Signed-off-by ?

UThe 'developer certificate of origin’
Ulf you add that line, you certify that you have

owritten the code yourself
Oand/or have permission to release it under GPLv2

UThe idea is to keep track of who has written code
UMaintainers usually add their signature, too
LUSee Documentation/SubmittingPatches

Linux mainline contribution

To which list should | send

Ocheck the linux-2.6/MAINTAINERS file for 'L:’ columns

Oor search on the project/subsytem homepagepage
Oif no specific list is found, use linux-kernel (Ikml)

Ufor ‘'merge request’ patches, Cc the maintainer
Osearch for 'M:

Lsome list restrict posting to list subscribers, so you first need to
subscribe

Ousually there is a web-based interface for subscription
Osometimes you have to use e-mail based method

Linux mainline contribution

| sent the patch, what next?

Uin the worst case, you get no feedback
Oif there’s no feedback for one week, re-post and/or
Osend private mail to maintainer pointing out no feedback
Uin the 'best’ case your code gets merged immediately
Oyou usually receive e-mail from the maintainer about it
Uin the regular case, you get some feedback / change requests

Otry to answer to all questions as fast as possible
Otry to accomodate change requests as fast as possible
Ore-submit after integrating all change requests

Linux mainline contribution

My patch got merged, what next?

Uif you wrote an entire driver and merged it
Oyou 'own’ the code, i.e. you should maintain it

Oyou should send bug fixes and updates, one-by-one, as patches
>don’t wait for some "official release" !!!

Oit is your responsibility to make sure the code in mainline is synchronized

Oyou will get Cc’ed by other people who want to change your driver

>i.e. if some API change affects your driver

>i.e. if somebody discovers a bug in your driver

>you should verify the new code works and provide feedback
>always keep the mailinglist in Cc

Linux mainline contribution

‘How to use git

Uplease see the practical demonstration

Linux mainline contribution

| Thanks

UPlease share your guestions and doubts now!

OPlease contact me at any later point, if you have questions
UI'm here to help Samsung understand Linux and Open Source!
Ohwelte@hmw-consulting.de

Thanks for your Attention

