
Introduction to the
Linux Development Model

by

Harald Welte <hwelte@hmw-consulting.de>
hmw-consulting / gpl-violations.org / openmoko.org

The Linux Development Model

 Introduction

 Who is speaking to you?
 an independent Free Software developer, consultant and trainer

 14 years experience using/deploying and developing for Linux on server and
workstation

 10 years professional experience doing Linux system + kernel level
development

 strong focus on network security and embedded

 expert in Free and Open Source Software (FOSS) copyright and licensing

 digital board-level hardware design, esp. embedded systems

 active developer and contributor to many FOSS projects

 thus, a techie, who will therefore not have fancy animated slides ;)

The Linux Development Model

 Introduction

 What is my affiliation?
 an independent freelancer, not speaking for any comany

 working in the Free Software community for many years

 used to be the maintainer of the Linux firewall netfilter/iptables

 started many Free Software and Open Hardware projects, e.g.
 OpenEZX - Open Source for Motorola EZX phones

 OpenPCD/librfid - 13.56MHz RFID stack

 OpenBeacon - 2.4GHz active RFID

 gnufiish - Linux for E-TEN PDA-phones

 OpenBSC - A GSM backend network BSC+MSC+HLR

 was employee #1 and Lead System Architect (HW+SW) of Openmoko

 consulting many companies on FOSS development + licensing	

The Linux Development Model

 What is Free Software?

 Software that is
 available in source code

 is licensed in a way to allow unlimited distribution

 allows modifications, and distribution of modifications

 is not freeware, but copyrighted work

 subject to license conditions, like any proprietary software

 READ THE LICENSE

 What is Open Source?

 Practically speaking, not much difference

 Remainder of this presentation will use the term FOSS (Free and Open Source
Software)

The Linux Development Model

 What is the FOSS Community?

 Diverse
 any individual can contribute

 no formal membership required

 every project has it’s own culture, rules, ...

 International
 the internet boasted FOSS development

 very common to have developers from all continents closely working together	

 Evolutionary
 developers come and go, as their time permits

 projects evolve over time, based on individual contributions

The Linux Development Model

 People / Groups involved

 Really depends on size of projects
 Small projects often a one-man show
 Bigger project have groups / subgroups
 Common Terms / Definitions
 Maintainer
 The person who formally maintains a project

 Core Team / Steering Committee
 A group of skilled developers who make important decisions

 Subsystem Maintainer
 Somebody who is responsible for a particular sub-project

 Developer Community
 All developers involved with a project

 User Community
 Users of the software who often share their experience with others

The Linux Development Model

 Development Process

 "Rough concensus and running code"
 Decisions made by technically most skilled people
 Reputation based hierarchy
 Direct Communication between developers
 Not always driven by size of a target market
 Release early, release often

The Linux Development Model

 Motivations (individual)

 gaining reputation (like in the scientific community)
 (students) gaining development experience with real-world

software

 solving problems that the author encounters on his computer
 fighting for Free Software as ideology
 working on exciting technology without having to work at

company XYZ

 work in creative environment with skilled people and no
managers ;)

The Linux Development Model

 Motivations (corporate)

 not having to reinvent the wheel
 if FOSS provides 80% of your problem solution, you just have to

add the missing 20%

 fully customizable, every aspect of the system can be
modified/adopted/changed

 no per-unit royalties
 be aware, you have more one-time R&D cost

The Linux Development Model

 Who is "The Community"?

 Studies show
 the majority of the Linux kernel code is developed by professional, paid

developers

 most of them work for large IT companies (Intel, Novell, IBM, RedHat, ...)

 those companies would not invest the development resources if there was no
business case for it!

 So "the community"
 is not a random collection of individuals scratching their itch

 but is a group of very prominent professional developers working for some of
the biggest IT companies worldwide

The Linux Development Model

 FOSS Community likes

 generic solutions
 portable code
 vendor-independent architecture
 clean code (coding style!)
 open standards
 good technical documentation
 raw hardware, no bundle of hardware and software sold as

solution

The Linux Development Model

 FOSS Community dislikes

 monopolistic structures
 e.g. intel-centrism

 closed ’industry forums’ with rediculous fees
 e.g. Infiniband, SD Card Association

 standard documents that cost rediculous fees
 NDA’s, if they prevent development of FOSS
 note: Samsungs manuals now under NDA :(

The Linux Development Model

 Weak Points of FOSS

 When FOSS is entirely volunteer-driven
 often way behind schedule (if there is any)
 already too late when projects start
 started when there already is a real need

 often a lack of (good) documentation
 programmers write code, not enduser docs...

 strong in infrastructure, weak in applications
 traditionally developers interested in very technical stuff

 Thus, FOSS really improves when commercial entities get
involved the right way!

The Linux Development Model

 Windows driver development model

 MS defines stable APIs and ABIs for drivers and releases SDK (DDK)

 All interfaces are specified by a single entity

 The interface between driver and OS core is designed as binary interface

 Hardware vendors develop drivers for their hardware component

 Hardware vendors compile and package drivers for their hardware component

 Hardware vendors sell bundle of hardware and software driver (object code)

The Linux Development Model

 Linux driver development model

 A community-driven process creates in-kernel driver API’s

 Drivers are written against those APIs

 Drivers are submitted to the kernel developes for inclusion into the OS source
tree

 Because all (good) drivers are inside one singe source tree, OS developers can
(and will) refine the APIs whenever apropriate

 There are no stable in-kernel API’s, and especially no stable in-kernel ABI’s

 Linux development community releases kernel source code

 Hardware vendor sells hardware only. The Windows driver CD is unused.

The Linux Development Model

 Linux driver development model

 Without proper support from HW vendor, Most hardware drivers are developed
by people inside that community

 sadly most of them have no relation to the HW manufacturer

 even more sadly, many of them have to work without or with insufficient documentation (reverse engineering)

 Good HW vendors understand this and support Linux properly!

 Linux is a big market by now
 Servers

 Embedded devices (est. > 40% of all wifi/dsl router + NAS appliances)

 Increasingly popular on the Desktop

 Recently: Netbooks

The Linux Development Model

 Linux driver development model, bad case
timeline

 Hardware vendor produces and ships hardware

 Users end up getting that hardware without any Linux support

 Somebody will start a driver and inquire about HW docs

 Hardware vendor doesn’t release docs

 If hardware is popular enough, somebody will start reverse engineering and
driver deevlopment

 With some luck, the driver is actually useable or even finished before the HW
product is EOL

The Linux Development Model

 Linux driver development model, good case
timeline #1

 Hardware vendor starts Linux driver development for new HW during HW R&D

 Hardware vendor submits Linux driver for review / inclusion into mainline Linux
kernel before HW ships

 User installs HW and has immediate support by current Linux kernel

 Hardware vendor publicly releases HW docs when the product ships, or even
later

 This enables the community to support/integrate the driver with new interfaces

 It also enables the community to support hardware post EOL, at a point where the HW vendor

The Linux Development Model

 Linux driver development model, good case
timeline #2

 Hardware vendor releases HW documentation during HW R&D or no later than
the product start shipping

 Somebody in the Linux development community might be interested in writing a
driver

 in his spare time because of technical interest in the HW

 as a paid contractor by the HW vendor

 In such cases it helps if the HW vendor provides free samples to trustworthy
developers

 That driver is very likely to get merged mainline

The Linux Development Model

 Why submit your code mainline?

 In the PC world
 Quantity-wise, most users use some Linux distribution

 Every version of every distribution ships a different Linux kernel version

 Most end-users are not capable of compiling their own kernel/drives (but way
more than you think!)

 Thus,
 teaming up with one (or even two, three) Linux distributions only addresses a small segment of the user base

 distributing your driver independently (bundled with hardware, ...) in a way that is ready-to-use for end-users is
a ton of work and almost impossible to get right

 the preferred option, with the least overhead for both user and HW vendor is to merge the driver mainline.

The Linux Development Model

 Why submit your code mainline?

 In the embedded/ARM world
 there are more customers of your SoC than just the tier-1 customers

 the small/medium size customers do not qualify for your support
 but if documentation and/or source is availale, they can still buy and use your product

 the more developers know your product, the more will recommend it in their
companies

 existing experience with a sertain SoC is very valuable, reduces lead time, helps solving problems quickly

 there are even way more custom distributions in the embedded world
 you can never support even the smallest fraction of them

 but all of them use the mainline kernel as base version

 if your driver + support code is in mainline, all of the distributions will easily run on your SoCs

 keeping all code in mainline reduces fragmentation of the codebase

 keeping all code in mainline means you get help with porting and integration
with new kernel changes

The Linux Development Model

 Samsung LSI is part of the community

 Samsung LSI is part of the community
 Linux exists because of massive, industry-wide collaboration
 Only because everyone contributes, Linux Grows
 Everyone helps to create a better platform
 If SLSI Linux drivers/support is good, Linux customers prefer

SLSI over other vendors

 Don’t only create drivers, but infrastructure (core OS/kernel)
 Every company does its small part of the Linux kernel R&D

The Linux Development Model

 How to submit your code mainline?

 The FOSS code quality requirements are _extremely_ high

 It’s not a surprise that Linux is generally considered much more stable than
competitors

 Code needs to be maintainable
 Linux supports old hardware ages beyond their EOL

 Thin of MCA, VLB, Decnet, IPX networking, ...

 So unless you respect the development culture, your code is likely to get
rejected!

 Post your driver at the respective mailing lists

 Release early, release often

 Don’t hesitate to ask for feedback and suggestions if you are not 100% sure
what is the right way to implement a certain feature

The Linux Development Model

 Techncal differences

 In the MS world, almost all interfaces are MS defined

 In the Linux world, Linux is only the OS kernel

 All other interfaces are specified by their respective projects

 Often there are many alternatives, e.g. for graphical drivers
 X.org project (X11 window server, typical desktop)

 DirectFB project (popular in embedded devices like TV set-top boxes)

 Qt/Embedded (popular in certain proprietary Linux-based mobile phones)

 Every project has it’s own culture, including but not limited to
 coding style

 patch submission guidelines

 software license

 communication methods

The Linux Development Model

 Practical Rules

 1. Much more communication
 It’s not a consumer/producer model, but cooperative!

 Before you start implementation, talk to project maintainers
 It’s likely that someone has tried a similar thing before

 It’s likely that project maintainers have already an idea how to proceed with implementation

 Avoid later hazzles when you want your code merged upstream

The Linux Development Model

 Practical Rules

 2. Interfaces
 If there is a standard interface, use it

 If insufficient: Don’t invent new interfaces, try to extend existing ones

 If there is an existing interface in a later (e.g. development) release upstream,
backport that interface

 Don’t be afraid to touch API’s if they’re inefficient
 Remember, you have the source and _can_ change them

The Linux Development Model

 Practical Rules

 3. Merge your code upstream
 Initially you basically have to create a fork

 Development of upsteram project continues sometimes at high speed

 If you keep it out of tree for too long time, conflicts arise

 Submissions might get rejected in the first round
 Cleanups needed, in coordination with upstream project

 Code will eventually get merged

 No further maintainance needed for synchronization between your contribution
and the ongoing upstream development

 Don’t be surprised if your code won’t be accepted if you didn’t discuss it with
maintainers upfront and they don’t like your implementation

The Linux Development Model

 Practical Rules

 4. Write portable code
 don’t assume you’re on 32bit CPU

 don’t assume you’re on little endian

 if you use assembly optimized code, put it in a self-contained module

The Linux Development Model

 Practical Rules

 5. Binary-only software will not be accepted
 yes, there are corner cases like FCC regulation on softradios

 but as a general rule of thumb, the community will not consider object code as
a solution to any problem

The Linux Development Model

 Practical Rules

 6. Avoid fancy business models
 If you ship the same hardware with two different drivers (half featured and

full-featured), any free software will likely make full features available on that

hardware.

The Linux Development Model

 Practical Rules

 7. Show your support for the Community
 By visibly contributing to the project
 discussions

 code

 equipment

 By funding developer meetings

 By making rebated hardware offers to developers

 By contracting / sponsoring / hiring developers from the community

The Linux Distribution Model

 The "Linux" System

 What is a so-called Linux system
 The Linux operating system kernel

 The X.org X11 windowing system

 Various non-graphical system-level software

 A variety of different desktop systems (KDE, Gnome)

 A variety of GUI programs

 In reality, this is a "Linux Distribution"
 sometimes referred to as "GNU/Linux System"

The Linux Distribution Model

 Entities in the Linux system

 Free Software projects and their developers
 So-called "Distributors" who create "Distributions"
 Contributors
 Users
 Vendors of proprietary Linux software

The Linux Distribution Model

 FOSS Projects

 Free Software projects and their developers
 Linux Kernel, Xorg, KDE, Gnome, Apache, Samba

 Role
 Development of the individual program

 Very focused on their individual project

 Portability and flexibility usually main concern

 Interact based on practical neccessity

 Usually they just provide source code, no object code

The Linux Distribution Model

 Distributions

 Distributions (both commercial and community based)
 Debian, Ubuntu, SuSE, Fedora, RedHat, Mandriva, ...

 Role
 Aggregate thousands of individual FOSS programs

 Find stable and compatible versions of those programs

 Do ’software system integration’

 Offer bianary software packages and installation media

 Offer (security) updates to their users

 Offer free/best effort or commercial support for professional users

The Linux Distribution Model

 Contributors

 Contributors
 are people not part of a specific development team

 usually "very active users" of a particular program

 Role
 find / document / fix bugs that they find themselves

 contribute bug reports, documentation or code

 participate in discussion on features or problems

The Linux Distribution Model

 Users

 Users
 are people just using software

 Role
 using programs

 they usually just install+use a particular distribution

 they typically do not download+install software directly from the particular
software project

The Linux Distribution Model

 Vendors of Proprietary Software

 Vendors of proprietary Software (e.g. Oracle)
 remain a small niche in the Linux world

 usually driven by a very specific industry

 they can exist because kernel/userspace ABI is stable!

 Role
 feed-back some of their requirements to the Open Source developers

 help the operating sytestem development to make sure OS is good for them

 Note: This is not applicable for driver development!
 drivers are in the Linux kernel, not userspace

The Linux Distribution Model

 Collaborative Software Development

 How do projects communicate internally
 Very rarely in physical meetings (people live too far apart)

 Very rarely in phone conferences (people live in different timezones)

 It’s almost entirely text-based (e-mails, sometimes chat system)

 Mailing Lists
 Usually every project has at least one list

 Often there are separate lists for developers and users

 Participation in the mailing list (reading and posting) open to anyone

The Linux Distribution Model

 Collaborative Software Development

 Project Management / Decision making
 usually there’s a small group (coreteam) or one leader

 he is often the creator of the program, or it’s maintainer

 he has the final say in what is accepted or not

 larger projects have ’subsystem maintainers’ with delegated authority

 so quite often, the structure is more hierarchical than people believe

 rough concensus and running code

The Linux Distribution Model

 Motivation of Software Developers

 Why do developers work on a FOSS project
 because they’re interested in a certain area

 because it’s fun to learn and improve skills

 because it’s fun to co-work with world-class hackers

 How do people make money
 often by offering commercial support for their software

 by offering poerting or system integration

 by offering development of extensions/modifications

 by working for a company that uses/needs that program

The Linux Distribution Model

 Linux and binary compatibility

 Linux and binary compatibility
 Drivers usually run inside the OS kernel

 Linux doesn’t have any stable kernel-internal ABI

 Linux doesn’t even have stable kernel-internal API

 Only the ABI to userspace is stable/fixed

 Thus, every minor Linux release can break in-kernel ABI+API
 This is why binary-only drivers simply don’t work!

The Linux Distribution Model

 Linux and binary compatibility

 I still don’t believe! Why not binary-only drivers
 because every distribution has a different base kernel revision

 because every distribution can change their kernel version e.g. as part of a
security update

 users will end up in incompatibility nightmare

 so please, don’t do it. It will never work for the majority of your users

The Linux Distribution Model

 Implications for Hardware Vendors

 Implications for Hardware Vendors
 Users are used to get all software from the distribution

 They are not used to separate vendor-provided driver CD’s

 Thus, drivers need to be in the distribution

 Goal: getting drivers into the distrubution

The Linux Distribution Model

 Implications for Hardware Vendors

 How to get drivers into distributions?
 You can talk directly to the distributions

 But: Their code architecture/style requirements are high

 But: Many of them do not accept binary-only drivers

 But: There are many, many distributions.

 Linux is only a certain portion of the market
 Every distribution is only a small portion of the portion

 Thus, new goal: Get your drivers in the mainline project

The Linux Distribution Model

 Implications for Hardware Vendors

 Getting drivers in the mainline project
 ensures that all distributions will pick up the driver

 ensures out-of-the box support of your hardware on all distributions

 ensures best user experience

 ensures least internal R&D resources
 no need to provide binaries for 3 versions of 5 distributions

 no need to constantly try to catch up with distribution kernel updates

The Linux Development Model

 Thanks

 Please share your questions and doubts now!

 Please contact me at any later point, if you have questions

 I’m here to help Samsung!

 hwelte@hmw-consulting.de

 Thanks for your Attention

