OsmocomTETRA Researching TETRA and its security

Harald Welte

gnumonks.org gpl-violations.org OpenBSC OsmocomBB hmw-consulting.de

SRLabs, January 2011, Berlin/Germany

Harald Welte OsmocomTETRA

くロト (過) (目) (日)

ъ

- 2 TETRA Technical Intro
- Osmocom TETRA

イロト イポト イヨト イヨト

■ のへの

About the speaker

- Using + playing with Linux since 1994
- Kernel / bootloader / driver / firmware development since 1999
- IT security expert, focus on network protocol security
- Core developer of Linux packet filter netfilter/iptables
- Board-level Electrical Engineering
- Always looking for interesting protocols (RFID, DECT, GSM)

ヘロト ヘアト ヘヨト

What is TETRA? Where is TETRA deployed?

Introducing TETRA

TErrestrial Trunked RAdio

- Digital PMR (Professional Mobile Radio) standard
- Standardization Body ETSI started work in 1990
- First specified in 1995, endorsed by EU Radiocomms Committee
- Commercial Vendors: Motorola, EADS/Nokia, Arteva/Simoco/Pye/Philips, Rohde & Schwarz
- Chinese vendors are expected to appear on the market soon

ヘロト 人間 ト ヘヨト ヘヨト

æ

What is TETRA? Where is TETRA deployed?

TETRA vs GSM

- Longer range due to lower frequency (but not vs. GSM 410/450!)
- Higher spectral efficiency (4 speech channels in 25kHz vs. 16 speech channels in 270kHz)
- Specified to work at speeds above 400 km/h
- one-to-one, one-to-many and many-to-many (but: GSM-R ASCI)
- offers direct mode between handsets in case base station is out of range
- separate infrastructure from public networks (but: GSM-R)
- de-central fall-back, i.e. base stations switching local calls

ヘロト ヘアト ヘビト ヘビト

What is TETRA? Where is TETRA deployed?

TETRA vs GSM

Summary

- Most of the TETRA advantages could be achieved using GSM-R in a lower frequency band
- Local call switching can be implemented in GSM (think of OpenBSC)
- GSM requires modifications on the air interface for direct mode, but even in TETRA, direct mode is *very* different from trunked mode

It seems, the industry rather re-invented an entirely different system to ensure the resulting equipment can be sold at multiples of the commercial-grade GSM equipment.

ヘロト 人間 ト ヘヨト ヘヨト

æ

What is TETRA? Where is TETRA deployed?

TETRA deployments

- In 2009, TETRA was deployed in 114 countries (every continent except North America)
- Typical users: Police, Transportation, Army, Fire Service, Ambulance, Customs, Coast Guard
- But also: Private company networks (industrial plants)
- In Germany there are 63 registered networks (only 5 are BOS)

ヘロト ヘアト ヘビト ヘビト

1

What is TETRA? Where is TETRA deployed?

TETRA deployments

- Follow TETRA Newsletter released by TETRA MoU organization
- Majority of recent deployments seems to be in Asia, specifically China.

ヘロト 人間 ト ヘヨト ヘヨト

3

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Frequencies

- European Emergency Services
 - 380-383 MHz and 390-393 MHz
 - 383-385 MHz and 393-395 MHz (optional)
- European Private/Commercial Systems
 - 410-430 MHz
 - 450-470 MHz
- Other Countries
 - Depending on local regulatory requirements

ヘロト ヘアト ヘヨト ヘ

글 > 글

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Frequency plan

- Single TETRA carrier normally 25kHz wide, no guard bands
- Channel grid can align on 6.25, 12.5 and 25kHz offset
- This allows seamless migration / co-existence with analog FM PMR in same band
- Uplink/Downlink spacing can depend on band, typically 10MHz
- Advanced TETRA-2 modes can operate at 50, 75 or 100kHz bandwidth

(日)

- ⊒ →

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Modulation

- pi/4 DQPSK (Differential Quaternary Phase Shift Keying)
- 2 bits per symbol
- Phase difference encodes information
- 8 phase constellations, 4 possible transitions
- Requires very linear amplifier as it is not constant envelope
- Used within TETRA at 36 kbits/sec (18 kSymbols/sec)

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA TDMA Frame structure

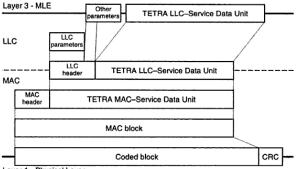
- Each time-slot contains 510 bits (GSM: 156)
- TDMA frame with 4 time-slots (GSM: 8)
- Duration of TDMA frame: 56.67 ms (GSM: FIXME)
- Multiframe: 18 TDMA frames (GSM: 26/51)
- Hyperframe: 60 Multiframes (GSM: FIXME)

ヘロト 人間 ト ヘヨト ヘヨト

æ

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Protocol Stack

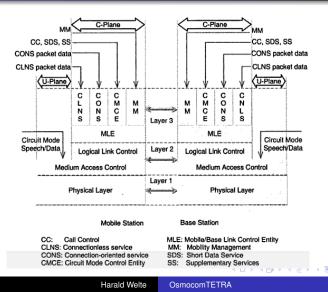

- The TETRA protocol stack is more complex than GSM
- Shared Stacking: PHY/lowerMAC/upperMAC/LLC
- Above LLC there is MLE (resembles GSM RR), on top:
 - MM (Mobility Management)
 - CMCE (Circuit Mode Control Entity)
 - CONS (Connection Oriented Service)
 - CNLS (Connectionless Service)
- Call Control, Supplementary services on top of CMCE
- Packet data on top of CNLS and CONS

ヘロト ヘアト ヘビト ヘ

- ⊒ →

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Protocol Stack



Layer 1 - Physical Layer

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Protocol Stack

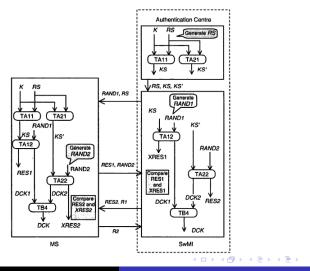
TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Security

- Once again all security features optional, like in GSM
- Security features include
 - Authentication
 - Air interface encryption
 - End-to-End encryption
 - Over-the-air re-keying (OTAR)
 - Remote locking of stolen devices
- Not all handsets support all features
- Key material can be stored in handset flash or in SIM

< ロ > < 同 > < 三 >

TETRA Air Interface TETRA Protocol Stack TETRA Security


TETRA Authentication

- Authentication messages part of Mobility Management (MM)
- Based on secret User Authentication Key (UAK) in SIM, generating Authentication key K by use of Algorithms TB1, TB2 or TB3
- Supports three modes
 - Authentication of user by infrastructure (TA11, TA12)
 - Authentication of infrastructure by user (TA21, TA22)
 - Mutual authentication (four-pass, TA11, TA12, TA21, TA22)

くロト (過) (目) (日)

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Authentication

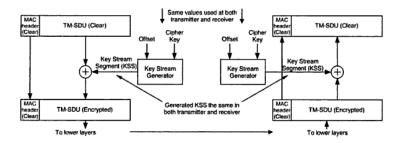
Harald Welte

OsmocomTETRA

ъ

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Air Interface Encryption


- Like GSM: Encrypts only the air interface, not the core network
- Unlike GSM: Not between L1 and L0 but inside the upper MAC layer
 - Thus, no idle frames with known plaintext
 - Thus, no redundant information due to FEC before crypto
- Encryption happens with different keys (SCK, DCK, CCK, GCK, MGCK)
- IV is concatenation of hyperframe, multiframe, frame and slot number

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Air Interface Encryption

Harald Welte OsmocomTETRA

イロン 不得 とくほ とくほ とうほ

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Encryption Keys

- SCK (Static Cipher Key)
 - pre-shared key, used in networks without authentication
 - up to 32 possible keys, selected by SYSINFO.
- DCK (Derived Cipher Key)
 - Generated by authentication procedure (like GSM A3/A8)
 - different for each user
- CCK (Common Cipher Key)
 - Generated by infrastructure and distributed to MS through DCK-encrypted connection using OTAR
 - Used for group calls within one location area
- GCK (Group Cipher Key)
 - Generated by infrastructure and distributed to MS through DCK-encrypted connection using OTAR
 - Used for specific protected groups
- MGCK (Modified GCK)
 - GCK modified by CCK

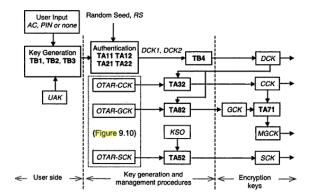
ヘロト ヘワト ヘビト ヘビト

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Encryption Algorithms

There are 4 specified TETRA Encryption Algorithms (TEA):

- TEA1 generally available, original algorithm, relaxed export
- TEA2 for public safety users in Schengen + EU countries
- TEA3 for public safety users elsewhere
- TEA4 generally available, reflects relaxed 1998 Wassenaar arrangement


It is assumed that at least original ciphers are 80-bit stream ciphers. None of them have ever leaked publicly!

ヘロト ヘアト ヘヨト ヘ

TETRA Air Interface TETRA Protocol Stack TETRA Security

TETRA Air Interface Encryption

Keys and Algorithms

- OTAR-CCK CCK sealed with DCK and received over the air interface
- OTAR-GCK GCK sealed with DCK and received over the air interface
- OTAR-SCK SCK sealed with KSO and received over the air interface
- KSO a session key for OTAR, derived from a key securely distributed to MSs.

Note: Algorithm names are shown in bold, e.g., TB1, TA31, TA52, etc.

さき 米 恵 き

ъ

Demodulator Lower MAC and PHY wireshark integration TETRA transmit code

Osmocom TETRA Demodulator

- 1:1 code re-use from APCO-25 Software receiver project
- Hierarchical block fully based on gnuradio blocks
 - Root-raised cosine filter
 - M-PSK receiver block
 - Costas Loop for carrier tracking
 - Muller&Muller synchronizer
 - output: Float value between -3 and 3 in units of pi/4

< ロ > < 同 > < 三 > .

Demodulator Lower MAC and PHY wireshark integration TETRA transmit code

Osmocom TETRA PHY

The burst synchronizer (tetra_burst_sync.c)

- First acquires the Sync Burst training sequence by correlation
- Later locks on Normal Burst (NB) training sequences
- Splits actual payload sections out of training sequences,

The burst generator (tetra_burst.c)

- puts together various bursts such as NB, SB and others
- calculates phase alignment bits
- used to test receiver code

ヘロト ヘヨト ヘヨト ヘ

- ⊒ →

Demodulator Lower MAC and PHY wireshark integration TETRA transmit code

Osmocom TETRA lower MAC

- Receives bursts from PHY layer
- Applies the following operations depending on burst type
 - De-scrambling
 - De-Interleaving
 - De-Puncturing (RCPC code)
 - Viterbi decoder (RCPC code)
 - Compute + Verify CRC-16
- Recover TETRA Time (frame number) from SYNC burst
- Hands decoded payload data to upper MAC

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

Demodulator Lower MAC and PHY wireshark integration TETRA transmit code

Osmocom TETRA lower MAC

- Receives payload from upper MAC
- Applies the following operations depending on burst type
 - Append tail bits
 - Compute CRC-16
 - Convolutional encoder (RCPC code)
 - Puncturing (RCPC code)
 - Interleaving
 - Scrambling
- Hands decoded payload data to PHY

Tx is currently only used in testing the Rx code

イロト イポト イヨト イヨト

Demodulator Lower MAC and PHY wireshark integration TETRA transmit code

Osmocom TETRA upper MAC

- Rx-only
- Not a complete implementation, just to decode SYSINFO, ACCESS-ASSIGN and some other bits.
- Mainly a proof-of-concept to ensure PHY and lower MAC work

くロト (過) (目) (日)

æ

Demodulator Lower MAC and PHY wireshark integration TETRA transmit code

Osmocom TETRA via GSMTAP

- The GSMTAP pseudo-header has been extended for TETRA
- Change is backward-compatible with existing GSMTAP
- current version of libosmocore supports extended GSMTAP
- OsmocomTETRA tetra-rx contains GSMTAP output support

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Demodulator Lower MAC and PHY wireshark integration TETRA transmit code

wireshark TETRA integration

- TETRA messages are unaligned bit-fields, full of variable-length and optional parts
- Writing manual decoding/encoding routines is tiresome and error-prone
- Beijing Institute of Technology has developed wireshark dissectors based on describing TETRA messages as ASN.1 PER (described in IEEE paper)
- We contacted them and they were willing to release their code under GNU GPL
- Zecke has extended it with GSMTAP support and is in the process of submitting it to wireshark mainline

ヘロト ヘアト ヘビト ヘビト

1

Demodulator Lower MAC and PHY wireshark integration TETRA transmit code

Transmitting TETRA

- The lower MAC and PHY code exists and is proven
- OP25 project contains modulator for pi/4 DQPSK
- Combining the two should render simplistic TETRA transmitter
- Sending continuous sequence of BSCH in SB and BNCH in NB comprises valid beacon and should allow handsets to lock on the signal
- So far no time to experiment with it
- Could be first step in SDR TETRA Base Station

ヘロト ヘヨト ヘヨト

Demodulator Lower MAC and PHY wireshark integration TETRA transmit code

Thanks

Thanks to

- Dieter Spaar for discovering the APCO25 demodulator and his work on speech decoding
- Sylvain Munaut for implementing our own Viterbi decoder
- Holger Freyther for his work on CRC, Shortened Reed-Muller and wireshark
- horiz0n for providing sample captures of TETRA radio traffic

くロト (過) (目) (日)

æ

Demodulator Lower MAC and PHY wireshark integration TETRA transmit code

Further Reading

- http://tetra.osmocm.org/
- http://www.tetramou.com/
- http://www.etsi.org/website/Technologies/TETRA.aspx
- http://www.tetramou.com/uploadedFiles/About_TETRA/TETRA%20Security%20pdf.pdf
- http://www.tetrawatch.net/
- Digital Mobile Communications and the TETRA System by John Dunlop, Demessie Girma, James Irvine Wiley

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ