

History of TTCN
TTCN-2 to TTCN-3 migration

TTTCN-3 capabilities, application areas
Presentation formats
Standard documents

II. INTRODUCTION
TO TTCN-3

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 18

• Originally: Tree and Tabular Combined Notation
• Designed for testing of protocol implementations based on the OSI Basic Reference

Model in the scope of Conformance Testing Methodology and Framework (CTMF)
• Versions 1 and 2 developed by ISO (1984 - 1997) as part of the

widely-used ISO/IEC 9646 conformance testing standard

• TTCN-2 (ISO/IEC 9646-3 == ITU-T X.292) adopted by ETSI

– Updates/maintenance by ETSI in TR 101 666 (TTCN-2++)
• Informal notation: Independent of Test System and SUT/IUT

• Complemented by ASN.1 (Abstract Syntax Notation One)

– Used for representing data structures
• Supports automatic test execution (e.g. SCS)
• Requires expensive tools (e.g. ITEX for editing)

History of TTCN

Presenter
Presentation Notes
Test notation is used to describe abstract test cases. The test notation can be an informal notation (without formally defined semantics) or a Formal Description Technique (FDT). TTCN-2 is an informal notation with clearly defined, but not formally defined semantics.a
The International Organization for Standardization (ISO*) has standardised first two versions of TTCN. The very same standard has been adopted as ITU-T and ETSI standard. Data structure definitions written in ASN.1 can be imported to TTCN-2.
TTCN-2 test cases can be edited using special software, e.g. ITEX. Executable test cases are produced and run with help of e.g. SCS.
Abbreviations:
ETSI	European Telecommunications Standards Institute
IEC	International Engineering Consortium
ITU-T	International Telecommunication Union �Telecommunication Standardization Sector
SCS	System Certification System �	(Ericsson's TTCN test case execution platform)
ITEX	Interactive TTCN Editor and eXecutor �	(from the Swedish firm Telelogic)
* Because "International Organization for Standardization" would have different abbreviations in different languages ("IOS" in English, "OIN" in French for Organisation internationale de normalisation), it was decided at the outset to use a word derived from the Greek isos, meaning "equal". Therefore, whatever the country, whatever the language, the short form of the organization's name is always ISO.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 20

• Multi-part ETSI Standard
– ES 201 873-1: TTCN-3 Core Language
– ES 201 873-2: Tabular Presentation Format (TFT)
– ES 201 873-3: Graphical format for TTCN-3 (GFT)
– ES 201 873-4: Operational Semantics
– ES 201 873-5: TTCN-3 Runtime Interface (TRI)
– ES 201 873-6: TTCN-3 Control Interface (TCI)
– ES 201 873-7: Using ASN.1 with TTCN-3 (old Annex D)
– ES 201 873-8: TTCN-3: The IDL to TTCN-3 Mapping
– ES 201 873-9: Using XML schema with TTCN-3
– ES 201 873-10: Documentation Comment Specification

• Available for download at: http://www.ttcn-3.org/

TTCN-3 Standard
Documents

Presenter
Presentation Notes
The latest ETSI TTCN-3 Core Language standard edition dates from 2005. The exact URL is http://ttcn.ericsson.se/standardization/downloads.shtml#ttcnv3.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 21

• Core Language
– is the textual common

interchange format between
applications

– can be edited as text or
accessed via GUIs offered
by various presentation
formats

• Tabular Presentation Format
(TFT)

– Table proformas for
language elements

– conformance testing
• Graphical Presentation Format

(GFT)
• User defined proprietary formats

TTCN-3 Presentation
Formats

Presentation
Format3

Presentation
Formatn

TTCN-3
Core
Language

Text format

Graphical
Format

Tabular
Format

Presenter
Presentation Notes
The Core Language has a textual format, that, as opposed to the mp format of the TTCN-2 language, can be read by humans.
Tabular format was originally meant to facilitate the migration from TTCN-2 to TTCN-3. It is sparingly used nowadays.
In the graphical format (similarly to MSC) it is not possible to define types, templates etc.
User Defined Formats are open to anyone.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 22

Example in Core
Language

function PO49901(integer FL) runs on MyMTC
{
 L0.send(A_RL3(FL, CREF1, 16));
 TAC.start;
 alt {
 [] L0.receive(A_RC1((FL+1) mod 2)) {
 TAC.stop;
 setverdict(pass);
 }
 [] TAC.timeout {
 setverdict(inconc);
 }
 [] any port.receive {
 setverdict(fail);
 }
 }
 END_PTC1(); // postamble as function call
}

Presenter
Presentation Notes
Core Language is the basic language. White space or new line characters are not taken into consideration; it makes it similar to a programming language. Different TTCN-3 applications use it for data interchange.
You should not strive to understand the example, rather get a look and feel of it. It looks like any ordinary programming language.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 24

Example in GFT Format
function newGuest(float eatingTime)
runs on MtcType

MtcType
self

mPCOtype
P1

mCPtype
CP

var SeatAssignmentType aSeat;
var GuestType newPTC := null;
timer T1 := maxWaitingTime;

var default def
:= activate (StandardDefault())

standardSeatRequest
T1

alt
? -> value aSeat

newPTC := GuestType.create;

connect(self:CP, newPTC:CP);
map(newPTC:P1,

system:gPCO[aSeat.number]);

SeatRejectType
?

inconc

T1

inconc

SeatAssignmentType

activePTCs := activePTCs + 1;
createdPTCs := createdPTCs + 1;

newPTC.start
(aGuest(1200.0))

function newGuest (float eatingTime) runs on MtcType {

var SeatAssignmentType aSeat;
var GuestType newPTC := null;
timer T1 := maxWaitingTime;

var default def := activate(StandardDefault());

// Request for a seat
P1.send(standardSeatRequest);
T1.start;

alt {
[] P1.receive(SeatAssignmentType:?) -> value aSeat {

newPTC := GuestType.create;

connect(self:CP, newPTC:CP);
map(newPTC:P1, system:gPCO[aSeat.number]);

newPTC.start(aGuest(1200.0));

activePTCs := activePTCs+1; // Update MTC variables
createdPTCs := createdPTCs+1;

}

[] P1.receive(SeatRejectType:?) { // No seat assigned
setverdict(inconc);

}

[] T1.timeout { // No answer on seat request
setverdict(inconc);

}
}
return;

}

Presenter
Presentation Notes
Graphical Presentation Format reminds the Test Sequence Chart or MSC. The messages sent and received are represented by arrows; there are additional special symbols for dynamic behaviour, cycles, decisions. For the time being, no editing program handling this format is known to us, however, there are programs capable of displaying Core Language programs in Graphical Format.

The perpendicular lines symbolize the components or, more precisely, the ports of the components. The horizontal arrows represent the messages sent and received. Boxes of various shape are representing the diverse operations coded in the Core Language.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 25

Interworking with
other languages

TTCN-3
Core

Language XML schema (XSD)
& XML document

IDL

Other types
& valuesn

• Harmonization possible with
other type and value systems
(possibly from proprietary
languages) when required

C/C++ functions
and constants

• C/C++ functions and
constants can be used

ASN.1 Types
& values

• Fully harmonized with ASN.1
(version 2002 except XML
specific ASN.1 features)

• TTCN can be integrated with
other 'type and value'
systems

Presenter
Presentation Notes
The most important language TTCN-3 can interwork with is ASN.1. TTCN-3 has been designed from the beginning to ensure that definitions written in ASN.1 can be imported into test suites without the need for any modifications. With other words, when a protocol is specified in ASN.1 there is no need to rephrase it. Likewise, information in other format can be reused, e.g. functions written in C++ can be called from within the TTCN-3 module. It is planned to harmonize TTCN-3 with XML (eXtended Markup Language) and IDL (Interface Definition Language), but it can be harmonized with other 'type & value' system.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 26

TTCN-3 = C-like control structures and operators, plus
+ Abstract Data Types
+ Templates and powerful matching mechanisms
+ Event handling
+ Timer management
+ Verdict management
+ Abstract (asynchronous and synchronous) communication
+ Concurrency
+ Test-specific constructions: alt, interleave, default, altstep

TTCN-3 is a procedural
language
(like most of the programming languages)

Presenter
Presentation Notes
TTCN-3 is a procedural language,�i.e., using the concept of the unit and scope. Unit corresponds to TTCN-3 modules, which are built of procedures (functions). Scope is the viewing range of a definition. There are seven scoping units in TTCN-3; they are dealt with later.
Abstract Data Types�Data can be specified independently from its coding and physical representation.
Templates �When sending a message, templates make possible to parameterise the message. When receiving a message, parameters or wildcards in templates render possible to accept or reject ('to match') a group of possible messages.
Event handling�While executing the program, we can wait for different events. The incidental arrival of these independent events influences the further program execution. Events are among others: reception of a message, completion of a test component, timer expiration.
Timer management�Timers can be started, stopped. The actual value of a timer can be read as well whether a given timer is running. The expiration of a timer can be checked.
Verdict management �Test verdict can be pass, fail, inconclusive, none or error. The final verdict is determined with regard to the outcome of each test step.
Abstract communication�Between the test executor system and the implementation under test there are two different communication possibilities. Message based communication is asynchronous while procedure based communication is synchronous. There is communication also between components.
Concurrency�Parallel test components (PTCs) are working concurrently, they can be created and destroyed.
Test specific constructions: alt, interleave, default, altstep�…are used to specify message reception behavior �

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 27

Test arrangement
and its ttcn-3 model

Test System

 Network

IUT

SAP

ASPs ASPs

PCO

SUT

 Network
Test Port

IUT

Port

MTC

System
ASPs

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 36

An example: “Hello,
World!” in TTCN-3

module MyExample {
 type port PCOType_PT message {
 inout charstring;
 }
 type component MTCType_CT {
 port PCOType_PT My_PCO;
 }
 testcase tc_HelloW ()
 runs on MTCType_CT system MTCType_CT
 {
 map(mtc:My_PCO, system:My_PCO);
 My_PCO.send ("Hello, world!");
 setverdict (pass);
 }
 control {
 execute (tc_HelloW());
 }
}

Presenter
Presentation Notes
This classical example illustrates how many definitions should be made to complete a module.
The main point is the testcase called HelloW. The message is sent over the port My_PCO defined previously.
The port, component, testcase definition form the module definitions part followed by the module control part.

Overview
Basic and structured types

Value notations
Sub-typing

IV. TYPE SYSTEM

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 39

•integer
– Represents infinite set of integer values
– Valid integer values: 5, -19, 0

•float
– Represents infinite set of real values
– Valid float values: 1.0, -5.3E+14

•boolean: true, false
•objid

– object identifier e.g.: objid { itu_t(0) 4 etsi }
•verdicttype

– Stores preliminary/final verdicts of test execution
– 5 distinct values: none, pass, inconc, fail, error

Simple basic types

Presenter
Presentation Notes
Integer: a type with distinguished values which are the positive and negative whole numbers, including zero.
Float: a type to describe floating-point numbers. Floating point numbers are represented in TTCN-3 as: <mantissa> × <10><exponent>.
Boolean: a type consisting of two distinguished values: true, false.
Objid: a type whose distinguished values are the set of all object identifiers conforming to clause 6.2 of ITU-T Recommendation X.660.
Verdicttype: a type for use with test verdicts consisting of 5 distinguished values.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 40

•bitstring
– A type whose distinguished values are the ordered sequences of bits
– Valid bitstring values: ’’B, ’0’B, ’101100001’B
– No space allowed inside

•hexstring
– Ordered sequences of 4bits nibbles, represented as hexadecimal digits:
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

– Valid hexstring values: ’’H, ’5’H, ’F’H, ’A5’H, ’50A4F’H
•octetstring

– Ordered sequences of 8bit-octets, represented as even number of
hexadecimal digits

– Valid octetstring values: ’’O, ’A5’O, ’C74650’O, ’af’O
– invalid octetstring values: ’1’O, ’A50’O

Basic string types

Presenter
Presentation Notes
Bitstring: a type whose distinguished values are the ordered sequences of zero, one, or more bits.
Hexstring: a type whose distinguished values are the ordered sequences of zero, one, or more hexadecimal digits, each corresponding to an ordered sequence of four bits.
Octetstring: a type whose distinguished values are the ordered sequences of zero or a positive even number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 41

•charstring
– Values are the ordered sequences of characters of ISO/IEC 646 complying

to the International Reference Version (IRV) – formerly International
Alphabet No.5 (IA5) described in ITU-T Recommendation T.50

– In between double quotes
› Double quote inside a charstring is represented by a pair of double

quotes
– Valid charstring values: "", "abc", """hello!"""
– Invalid charstring values: "Linköping", "Café"

•universal charstring
– UCS-4 coded representation of ISO/IEC 10646 characters: "∂ξ"
– May also contain characters referenced by quadruples, e.g.:
– char(0, 0, 40, 48)

Basic string types
continued

Presenter
Presentation Notes
Universal charstring: The "quadruple" is capable to denote a single character and denotes the character by the decimal values of its group, plane, row and cell according to ISO/IEC 10646.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 46

• User defined abstract container types representing:
– record: ordered sequence of elements
– set: unordered list of elements

• Optional elements are permitted (using the optional
keyword)

Structured types –
record, set

// example set type def.
type set MySetType {
 integer field1 optional,
 boolean field2
}

// example record type def.
type record MyRecordType {
 integer field1 optional,
 boolean field2
}

Presenter
Presentation Notes
In the above example, "type" of the elements is integer or boolean, their "identifier" is field1 or field2. The same identifiers may be used in both record and set, because it is not mandatory to use globally unique names.
Optional elements may or may not be present when assigning value to the constructs.
A record or a set may be an element of another record or set.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 61

• Value-range subtype definition is applicable only for integer,
charstring, universal charstring and float types

– for charstrings: restricts the permitted characters!

•-infinity/infinity keywords can be used instead of a value indicating
that there is no lower/upper boundary

• Note that –infinity/infinity are NOT values and cannot be used in
expressions, thus the following example is invalid:

Sub-typing: value
range restrictions

type integer MyIntegerRange (1 .. 100);
type integer MyIntegerRange8 (0 .. infinity);
type charstring MyCharacterRange ("k" .. "w");

var integer v_invalid := infinity; // error!!!

Presenter
Presentation Notes
TTCN-3 permits the specification of a range of values of type integer, charstring, universal charstring and float. The lower boundary and the upper boundary are included in the range of permitted values. In the case of charstring and universal charstring types, the boundaries mean character positions according to the coding rules of the respective character set.
The keyword infinity may be used in order to specify an infinite integer or float range.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 62

• Value list restriction subtype is applicable for all basic type as
well as in fields of structured types:

• For integer and float types it is permitted to mix value list
and value range subtypes:

Sub-typing: value list
restrictions

type charstring SideType ("left", "right");
type integer MyIntegerList (1, 2, 3, 4);
type record MyRecordList {
 charstring userid ("ethxyz", "eraxyz"),
 charstring passwd ("xxxxxx", "yyyyyy")
};

type integer MyIntegerListAndRange (1..5, 7, 9);

Presenter
Presentation Notes
The subtype defined by this list enumerated in parentheses restricts the allowed values of the subtype to those values in the list. The values in the list shall be of the root type and shall be a true subset of the values defined by the root type.
For values of type integer, charstring, universal charstring and float it is possible to mix lists and ranges. Within charstring and universal charstring subtype definitions, lists and ranges shall not be mixed in the same subtype definition. For values of type bitstring, hexstring, octetstring it is possible to mix lists and length restrcitions.

Note: in sub-typing we use parenthesizes around the value list, while in value-notation we use curly braces around the value lists

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 65

•charstring and universal charstring types can be restricted
with patterns ( charstring value patterns)

• All values denoted by the pattern shall be a true subset of the type being
sub-typed

Sub-typing: patterns

// all permitted values have prefix abc and postfix xyz
type charstring MyString (pattern "abc*xyz");

// a character preceded by abc and followed by xyz
 type charstring MyString2 (pattern "abc?xyz");
//all permitted values are terminated by CR/LF
 type charstring MyString3 (pattern "*\r\n")

type MyString MyString3 (pattern "d*xyz");
/* causes an error because MyString does not contain a

value starting with character ’d’*/

Presenter
Presentation Notes
type charstring MyString2 (pattern "abc?\q{0,0,1,113}");
/* causes an error because a universal char {0,0,1,113} is not allowed in the charstring type */

//all permitted universal string values are terminated by CR/LF
type universal charstring MyUString (pattern "*\r\n")

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 124

Verdict overwriting
logic

Result Partial verdict

Former value of
verdict none pass inconc fail error

none none pass inconc fail error

pass pass pass inconc fail error

inconc inconc inconc inconc fail error

fail fail fail fail fail error

Presenter
Presentation Notes
The verdict overwriting logic determines the resulting verdict in function of the former verdict every time the operation setverdict is applied in a module. The verdict only can change for the worse, i.e., the following sequence alone is possible: none > pass > inconc > fail > error.

Introduction to templates
Template matching mechanisms

Inline templates
Modified templates

Parameterized templates
Parameterized modified templates

Template hierarchy

XII. DATA TEMPLATES

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 155

 Message to send Acceptable answer

Template concept

TYPE: REQUEST

ID: 23

FROM: 231.23.45.4

TO: 232.22.22.22

FIELD1: 1234

FIELD2: ”Hello”

TYPE: RESPONSE

ID: SAME as in REQ.

FROM: 230.x – 235.x

TO: 231.23.45.4

FIELD1: 800-900

FIELD2: Do not care

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 159

• Syntax is similar to variable definition
– but not only concrete values, but also matching mechanisms may

stand at the right side of the assignment

Sample template
type record MyMessageType {
integer field1 optional,
charstring field2,
boolean field3 };

template MyMessageType tr_MyTemplate
(boolean pl_param) //formal parameter list
:= { //template body between braces
 field1 := ?,
 field2 := (”B”, ”O”, ”Q”),
 field3 := pl_param
}

Presenter
Presentation Notes
First, we define a record (MyMessageType) containing three fields, the first one being optional.
The type of the template will be the one just defined. The template we'll define is called tr_MyTemplate. In the template name prefix, 't' stands for 'template' and 'r' for receiving.
The template accepts the following messages: the first field must be present, but its content is don't care. The second field may have the value B, O or Q. The value of the last field must be in function of the parameter pl_param either true or false.
The template can be used for receiving only, because it contains an undefined field (the first one).

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 163

• Value range template can be used with integer, float and (universal)
charstring types (and types derived from these).

• Syntax of value range definition is equivalent to the notation of the value
range subtype:

• Lower and upper boundary of a (universal) charstring value range
template must be a single character string

– Determines the permitted characters

Value range template

// Value range
template float tr_NearPi := (3.14 .. 3.15);
template integer tr_FitsToOneByte := (0 .. 255);
template integer tr_GreaterThanZero := (1 .. infinity);

// Match strings consisting of any number of A, B and C
template charstring tr_PermittedAlphabet := ("A" .. "C");

Presenter
Presentation Notes
Range indicates the upper and the lower boundaries of acceptable values. An expression evaluating to a specific integer or float value can be used when setting the boundaries.
The lower boundary (written after the left parenthesis) must be less than the upper boundary (written before the right parenthesis).

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 167

•? matches an arbitrary element,
* matches any number of consecutive elements;

• applicable inside bitstring, hexstring, octetstring, record of,
set of types and arrays;

• not allowed for charstring and universal charstring:
– pattern shall be used instead! (see next slide)

Matching inside
values

// Using any element matching inside a bitstring value
// Last 2 bits can be '0' or '1'
template bitstring tr_AnyBSValue := ’101101??’B;

// Any elements or none in record of
// '2' and '3' must appear somewhere inside in that order
template ROI tr_TwoThree := { *, 2, 3, * };

Presenter
Presentation Notes
The matching symbol "?" is used to indicate that it replaces single elements of a string (except character strings), a record of, a set of or an array. It shall be used only within values of string types, record of types, set of types and arrays.
The matching symbol "*" is used to indicate that it replaces none or any number of consecutive elements of a string (except character strings), a record of, a set of or an array. The "*" symbol matches the longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 192

modified template

parametrized template

template parameter

Template hierarchy –
typical situations

1 15 20

* omit (10..20)

Sequential behavior
Alternative behavior

Alt statement, snapshot semantics
Guard expressions, else guard

Altsteps
Defaults

Interleave statement

XIV. BEHAVIORAL
STATEMENTS

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 208

• Program statements are executed in order
• Blocking statements block the execution of the component

– all receiving communication operations, timeout, done, killed

• Occurrence of unexpected event may cause infinite blocking

Sequential execution
behavior features

// x must be the first on queue P, y the second
P.receive(x); // Blocks until x appears on top of queue P
P.receive(y); // Blocks until y appears on top of queue P
// When y arrives first then P.receive(x) blocks -> error

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 209

• Unable to prevent blocking operations from dead-lock
i.e. waiting for some event to occur, which does not happen

• Unable to handle mutually exclusive events

problems of
Sequential execution

// Assume all queues are empty
P.send(x); // transmit x on P -> does not block
T.start; // launch T timer to guard reception
P.receive(x); // wait for incoming x on P -> blocks
T.timeout; // wait for T to elapse
// ^^^ does not prevent eventual blocking of P.receive(x)

// x, y are independent events
A.receive(x); // Blocks until x appears on top of queue A
B.receive(y); // Blocks until y appears on top of queue B
// y cannot be processed until A.receive(x) is blocking

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 210

• Go for the alternative that happens earliest!
• Alternative events can be processed using the alt statement
• alt declares a set of alternatives covering all events, which …

– can happen: expected messages, timeouts, component termination;
– must not happen: unexpected faulty messages, no message received

› … in order to satisfy soundness criterion
• All alternatives inside alt are blocking operations

• The format of alt statement:

solution:
Alternative execution
– alt statement

alt { // declares alternatives
// 1st alternative (highest precedence)
// 2nd alternative
// …
// last alternative (lowest precedence)
} // end of alt

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 211

• Take care of unexpected event and timeout:

Alternative execution
behavior examples

P.send(req)
T.start;
// …
alt {
[] P.receive(resp) { /* actions to do and exit alt */ }
[] any port.receive { /* handle unexpected event */ }
[] T.timeout { /* handle timer expiry and exit */ }
}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 215

Nested alt statement

alt {
[] P.receive(1)
 {
 P.send(2)
 alt { // embedded alt
 [] P.receive(3) { P.send(4) }
 [] any port.receive { setverdict(fail); }
 [] any timer.timeout { setverdict(inconc) }
 } // end of embedded alt
 }
[] any port.receive { setverdict(fail); }
[] any timer.timeout { setverdict(inconc) }
}

Presenter
Presentation Notes
The repeat keyword can appear only as the last statement within statements blocks of alt statements. Then, istead of jumping to the next statement following the alt, the execution is continued from the beginning of the alt with a new snapshot.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 216

• Takes a new snapshot and re-evaluates the alt statement
• Can appear as last statement in statement blocks of statements

• Can be used for example to filter “keep alive” messages :

The repeat statement

P.send(req)
T.start;
// …
alt {
[] P.receive(resp) { /* actions to do and exit alt */ }
[] P.receive(keep_alive) { /* handle keep alive message */
 repeat }

[] any port.receive { /* handle unexpected event */ }
[] T.timeout { /* handle timer expiry and exit */ }
}

Presenter
Presentation Notes
The repeat keyword can appear only as the last statement within statements blocks of alt statements. Then, istead of jumping to the next statement following the alt, the execution is continued from the beginning of the alt with a new snapshot.

