Osmocom Testing Initiative

Harald Welte <laforge@gnumonks.org>



split NITB aftermath (the good parts)

= biggest architectural change since we started in 2008
= lots of good reasons and design improvements

* finite state machines with proper timeouts / clean-up

proper 3GPP AolP with interoperability tesing

no synchronous HLR database access
HLR access from OsmoMSC and OsmoSGSN
2G /3G authentication over GERAN and UTRAN



split NITB aftermath (the bad parts)

= never-ending list of breakage
 actual regressions of things that used to work before

 things that were known omissions during the restructuring

= some commercial users stuck with SCCPlite and thus old @osmo-bsc-sceplite@
* almost none of the new features or bug fixes there
e no automatic testing

* back-ports time-consuming



split NITB aftermath (lessons learned)

= overall complexity of Osomcoom cellular is quite stunning now
= absence of proper functional testing has caused massive fall-out
= the split architecture allows for betteer testing of smaller parts of the system
= my personal main focus of the last 5+ months:
* testing, testing, testing, testing
e testing, testing, testing, testing
e some more testing

e even more testing



Osmocom CNI testing (1/2)

= unit test (autotest, like we always had)
o test individual functions / APIs of libraries / programs

» executed during "make check" and hence before any patch can get merged

= automatized functional tests in TTCN-3

* test external visible behavior on interfaces such as Abis, A, GSUP, GTP,
MNCC, PCUIF, CTRL, VTY, ...

» executed nightly by Jenkins (could be more frequently)



Osmocom CNI testing (2/2)

= Oosmo-gsm-tester

e tests entire Osmoocom network with
BTS/BSC/MSC/HLR/PCU/SGSN/GGSN/...

e uses real BTS + MS hardware (over coaxial cable)
e automatic execution multiple times per day
= interop tests

» against NG40 RAN + CN simulator from NG4% (A / Gb / Iu level)

 not fully automatized yet



Osmocom TTCN-3 Test Suites

= developed in 2017+2018
= compiled using Eclipse TITAN
* uses just a command-line compiler + Makefiles

* no IDE needed at all, don’t let Eclipse fool you

= containerized in Docker

= executed by Jenkins CI



Terminology

ATS
Abstract Test Suite

MTC

Main Test Component

PTC

Parallel Test Component

IUT

Implementation Under Test



Test Suite Philosophy

= test one network element (our IUT)
test external behavior (3GPP and non-3GPP)

emulate entire environment from TTCN-3

don’t reuse Osmocom C-code protocol implementations in the tests

test against independent TTCN-3 implementations!



What to test?

= successful cases
= erroneous cases (no answer, NACK, ...)

e many difficult to reproduce with real phones/devices

load / resource exhaustion

spec compliance

= focus on functionality actually relevant to IUT



Why TTCN-3 + TITAN

= TTCN-3 specifically designed for telecom protocol testing
= TITAN team released many telecom protocols in TTCN-3, such as

e BSSAP, L3 (RR/MM/CC), SMS (CP/RP/TP), SS, M3UA, SCCP, GTP, NS,
BSSGP, ...

 shortens our test development cycle

e permits us to test against known working industry implementations



Test suites for Osmocom CNI components

= Oosmo-bts

= osmo-bsc (for both AoIP and SCCPlite)
" OSmo-mscC

" Osmo-mgw

= osmo-hlr

" osmo-sip-connector

" OSmO—-sgsn

" 0sSmMO-ggsn



Test suites in progress

= Oosmo-pcu
= osmo-bsc nat

" Oosmo—-gbproxy



BTS Tests.ttcn

= external interfaces
» A-bis side: RSL (emulates BSC-side server)
e Um side: L1CTL to control MS

e PCU side: pcu_socket

A-bis RSL

bursts

bursts

IarT

osmo-bts-trx ‘_\ CTRL

A-bis OML

osmo-bsc
OML only

ATS
BTS_Tests.tten




BSC _ Tests.ttcn

= external interfaces
e A-bis side: RSL (emulates BTS-side client)
» A-side: BSSAP/SCCP/M3UA (emulates MSC-side)
e MGW side: MGCP (emulates MGW side)

osmo-bts-omIldummy
OML only

A-bis OML

A BSSAP
SCCP/M3UA

A BSSAP
SCCP/M3UA

IUT

osmo-bsc

ATS
BSC_Tests.ttcn




MSC _Tests.ttcn

= external interfaces
* A: BSSAP/SCCP/M3UA (emulates BSC-side)
e MNCC: MNCC/unix-domain (emulates ext. MNCC side)
e MGW: MGCP (emulates MGW side)
e GSUP (impllements HLR side)

A BSSAP
SCCP/M3UA

D5MO-MSC

A BSSAP
SCCP/M3UA




MGCP_Test.ttcn

= external interfaces
 MGCP (emulates call agent)

e RTP (stream source/sink)

RTP
IuT RTP ATS
OSMO-MEW MGCP MGCP_Test.ttcn




HLR_ Tests.ttcn

= external interfaces
e GSUP (emulates VLR/SGSN side)

ATS GSUP IuT
HLR_Tests.ttcn VTY osmo-hlr




SIP_Tests.ttcn

= external interfaces
e MNCC (emulates MSC side)
e SIP (emulates SIP switch)

MNCC
ATS SIP SIP
SIP_Tests.ttcn VTY 0sSmo-sip-connector




SGSN_Tests.ttcn

= external interfaces
e Gb (emulates PCU side NS/BSSGP + MS)
 GSUP (emulates HLR)
 VTY

Gp (GTP)
SGSN Gb '
OSMO-§g5N VTY




GGSN_Tests.ttcn

= external interfaces
e Gp: GTP (emulates SGSN)

e Gi: IP (emulates Internet)

GGSN

0Smo-ggsn

Gi (IP)
— Gp (GTP) 7
VTY




Dockerized Setup

= one process per container
= packages either
e IUT (e.g. osmo-bsc)
e ATS (compiled docker test suite)

 other utility (e.g. trxcon or osmo-bts-omldummy)

= why?
* no need for local ip/network configuration
» standardized / packaged setup on every machine

* run older/newer versions of ATS against older/newer IUT



Jenkins Cl Execution

1. update docker-playground.git

a. contains Dockerfile for ATS + IUT

2. rebuild IUT container[s] (e.g. osmo-bts-master)

a. git magic ensures re-build only if osmo-bts.git master changed

3. rebuild ATS container (e.g. ttcn3-bts-test)

a. git magic ensures re-build only if osmo-ttcn3-hacks.git master
changed

4. run docker-playground/ttcn3-bts-test/jenkins.sh

a. creates docker network
b. starts IUT + ATS docker containers

c. collects test results



Jenkins Cl Reporting

= junit-xml generation
= store artefacts
o pcap file of every test case
o ATS log file (TTCN-3 testsuite)
e IUT log file[s] (osmo-*.10qg)
e IUT config file[s] (osmo-*.cfq)

= see https://jenkins.osmocom.org/jenkins/view/TTCN3/


https://jenkins.osmocom.org/jenkins/view/TTCN3/

Further Reading

= http://git.osmocom.org/osmo-ttcn3-hacks/
= http://git.osmocom.org/docker-playground/
= http://osmocom.org/projects/cellular-infrastructure/wiki/Titan_ TTCN3_ Notes


http://git.osmocom.org/osmo-ttcn3-hacks/
http://git.osmocom.org/docker-playground/
http://osmocom.org/projects/cellular-infrastructure/wiki/Titan_TTCN3_Notes

EOF

End of File



