
Osmocom Testing Initiative
Harald Welte <laforge@gnumonks.org> 

 

 



split NITB aftermath (the good parts)
biggest architectural change since we started in 2008

lots of good reasons and design improvements

finite state machines with proper timeouts / clean-up

proper 3GPP AoIP with interoperability tesing

no synchronous HLR database access

HLR access from OsmoMSC and OsmoSGSN

2G/3G authentication over GERAN and UTRAN

 

 



split NITB aftermath (the bad parts)
never-ending list of breakage

actual regressions of things that used to work before

things that were known omissions during the restructuring

some commercial users stuck with SCCPlite and thus old @osmo-bsc-sccplite@

almost none of the new features or bug fixes there

no automatic testing

back-ports time-consuming

 

 



split NITB aftermath (lessons learned)
overall complexity of Osomcoom cellular is quite stunning now

absence of proper functional testing has caused massive fall-out

the split architecture allows for betteer testing of smaller parts of the system

my personal main focus of the last 5+ months:

testing, testing, testing, testing

testing, testing, testing, testing

some more testing

even more testing

 

 



Osmocom CNI testing (1/2)
unit test (autotest, like we always had)

test individual functions / APIs of libraries / programs

executed during "make check" and hence before any patch can get merged

automatized functional tests in TTCN-3

test external visible behavior on interfaces such as Abis, A, GSUP, GTP,

MNCC, PCUIF, CTRL, VTY, …

executed nightly by Jenkins (could be more frequently)

 

 



Osmocom CNI testing (2/2)
osmo-gsm-tester

tests entire Osmoocom network with

BTS/BSC/MSC/HLR/PCU/SGSN/GGSN/…

uses real BTS + MS hardware (over coaxial cable)

automatic execution multiple times per day

interop tests

against NG40 RAN + CN simulator from NG4% (A / Gb / Iu level)

not fully automatized yet

 

 



Osmocom TTCN-3 Test Suites
developed in 2017+2018

compiled using Eclipse TITAN

uses just a command-line compiler + Makefiles

no IDE needed at all, don’t let Eclipse fool you

containerized in Docker

executed by Jenkins CI

 

 



Terminology
ATS

Abstract Test Suite

MTC

Main Test Component

PTC

Parallel Test Component

IUT

Implementation Under Test

 

 



Test Suite Philosophy
test one network element (our IUT)

test external behavior (3GPP and non-3GPP)

emulate entire environment from TTCN-3

don’t reuse Osmocom C-code protocol implementations in the tests

test against independent TTCN-3 implementations!

 

 



What to test?
successful cases

erroneous cases (no answer, NACK, …)

many difficult to reproduce with real phones/devices

load / resource exhaustion

spec compliance

focus on functionality actually relevant to IUT

 

 



Why TTCN-3 + TITAN
TTCN-3 specifically designed for telecom protocol testing

TITAN team released many telecom protocols in TTCN-3, such as

BSSAP, L3 (RR/MM/CC), SMS (CP/RP/TP), SS, M3UA, SCCP, GTP, NS,

BSSGP, …

shortens our test development cycle

permits us to test against known working industry implementations

 

 



Test suites for Osmocom CNI components
osmo-bts

osmo-bsc (for both AoIP and SCCPlite)

osmo-msc

osmo-mgw

osmo-hlr

osmo-sip-connector

osmo-sgsn

osmo-ggsn

 

 



Test suites in progress
osmo-pcu

osmo-bsc_nat

osmo-gbproxy

 

 



BTS_Tests.ttcn
external interfaces

A-bis side: RSL (emulates BSC-side server)

Um side: L1CTL to control MS

PCU side: pcu_socket

 

 



BSC_Tests.ttcn
external interfaces

A-bis side: RSL (emulates BTS-side client)

A-side: BSSAP/SCCP/M3UA (emulates MSC-side)

MGW side: MGCP (emulates MGW side)

 

 



MSC_Tests.ttcn
external interfaces

A: BSSAP/SCCP/M3UA (emulates BSC-side)

MNCC: MNCC/unix-domain (emulates ext. MNCC side)

MGW: MGCP (emulates MGW side)

GSUP (impllements HLR side)

 

 



MGCP_Test.ttcn
external interfaces

MGCP (emulates call agent)

RTP (stream source/sink)

 

 



HLR_Tests.ttcn
external interfaces

GSUP (emulates VLR/SGSN side)

VTY

 

 



SIP_Tests.ttcn
external interfaces

MNCC (emulates MSC side)

SIP (emulates SIP switch)

VTY

 

 



SGSN_Tests.ttcn
external interfaces

Gb (emulates PCU side NS/BSSGP + MS)

GSUP (emulates HLR)

VTY

 

 



GGSN_Tests.ttcn
external interfaces

Gp: GTP (emulates SGSN)

Gi: IP (emulates Internet)

 

 



Dockerized Setup
one process per container

packages either

IUT (e.g. osmo-bsc)

ATS (compiled docker test suite)

other utility (e.g. trxcon or osmo-bts-omldummy)

why?

no need for local ip/network configuration

standardized / packaged setup on every machine

run older/newer versions of ATS against older/newer IUT

 

 



Jenkins CI Execution
1. update docker-playground.git

a. contains Dockerfile for ATS + IUT

2. rebuild IUT container[s] (e.g. osmo-bts-master)

a. git magic ensures re-build only if osmo-bts.git master changed

3. rebuild ATS container (e.g. ttcn3-bts-test)

a. git magic ensures re-build only if osmo-ttcn3-hacks.git master

changed

4. run docker-playground/ttcn3-bts-test/jenkins.sh

a. creates docker network

b. starts IUT + ATS docker containers

c. collects test results

 

 



Jenkins CI Reporting
junit-xml generation

store artefacts

pcap file of every test case

ATS log file (TTCN-3 testsuite)

IUT log file[s] (osmo-*.log)

IUT config file[s] (osmo-*.cfg)

see https://jenkins.osmocom.org/jenkins/view/TTCN3/

 

 

https://jenkins.osmocom.org/jenkins/view/TTCN3/


Further Reading
http://git.osmocom.org/osmo-ttcn3-hacks/

http://git.osmocom.org/docker-playground/

http://osmocom.org/projects/cellular-infrastructure/wiki/Titan_TTCN3_Notes

 

 

http://git.osmocom.org/osmo-ttcn3-hacks/
http://git.osmocom.org/docker-playground/
http://osmocom.org/projects/cellular-infrastructure/wiki/Titan_TTCN3_Notes


EOF
End of File

 

 


