summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPiotr Krysik <perper@o2.pl>2009-06-12 09:58:14 +0200
committerPiotr Krysik <perper@o2.pl>2009-06-12 09:58:14 +0200
commit3a73724cd785d550955708dbcd141175d9e4f519 (patch)
treea7d49b1c54707fc3a5ec6bf5485cb266bf107bec
parentb873c75e3aa74c2c4e8ff17127c89ba06a19aba0 (diff)
new comments to gsm_receiver_cf.cc
-rw-r--r--src/lib/gsm_receiver_cf.cc322
1 files changed, 163 insertions, 159 deletions
diff --git a/src/lib/gsm_receiver_cf.cc b/src/lib/gsm_receiver_cf.cc
index 827c600..e624450 100644
--- a/src/lib/gsm_receiver_cf.cc
+++ b/src/lib/gsm_receiver_cf.cc
@@ -1,21 +1,21 @@
/* -*- c++ -*- */
/*
- * Copyright 2004 Free Software Foundation, Inc.
+ * @file
+ * @author Piotr Krysik <pkrysik@stud.elka.pw.edu.pl>
+ * @section LICENSE
*
- * This file is part of GNU Radio
- *
- * GNU Radio is free software; you can redistribute it and/or modify
+ * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
- * GNU Radio is distributed in the hope that it will be useful,
+ * This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
- * along with GNU Radio; see the file COPYING. If not, write to
+ * along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
@@ -39,7 +39,7 @@
#define SYNC_SEARCH_RANGE 30
#define TRAIN_SEARCH_RANGE 40
-//tutaj umieściłem funkcję która dostaje normalny pakiet + numer
+//tutaj umieściłem funkcję która dostaje normalny pakiet + numer
//numer pakietu to numer ramki + numer szczeliny czasowej
//w tym przykładzie po prostu wyrzuca zawartość pakietu na wyjście
//ps. pakiety które nie mają trzech zer na początku zazwyczaj są błędnie odebrane
@@ -113,8 +113,8 @@ gsm_receiver_cf::gsm_receiver_cf(gr_feval_dd *tuner, int osr)
d_OSR(osr),
d_chan_imp_length(CHAN_IMP_RESP_LENGTH),
d_tuner(tuner),
- d_samples_counter(0),
-// d_fcch_start_pos(0),
+ d_counter(0),
+ d_fcch_start_pos(0),
d_freq_offset(0),
d_burst_nr(osr),
d_state(first_fcch_search)
@@ -134,74 +134,76 @@ gsm_receiver_cf::~gsm_receiver_cf()
{
}
-void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &ninput_items_required)
+void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &nitems_items_required)
{
- ninput_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR);
+ nitems_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR);
}
int
gsm_receiver_cf::general_work(int noutput_items,
- gr_vector_int &ninput_items,
+ gr_vector_int &nitems_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
- const gr_complex *in = (const gr_complex *) input_items[0];
+ const gr_complex *input = (const gr_complex *) input_items[0];
float *out = (float *) output_items[0];
- int produced_out = 0;
- float prev_freq_offset;
+ int produced_out = 0; //how many output elements were produced - this isn't used yet
+ //probably the gsm receiver will be changed into sink so this variable won't be necessary
switch (d_state) {
- //bootstrapping
+ //bootstrapping
case first_fcch_search:
- if (find_fcch_burst(in, ninput_items[0])) {
- set_frequency(d_freq_offset);
- produced_out = 0;
+ if (find_fcch_burst(input, nitems_items[0])) { //find frequency correction burst in the input buffer
+ set_frequency(d_freq_offset); //if fcch search is successful set frequency offset
+ //produced_out = 0;
d_state = next_fcch_search;
} else {
- produced_out = 0;
+ //produced_out = 0;
d_state = first_fcch_search;
}
break;
- case next_fcch_search:
- prev_freq_offset = d_freq_offset;
- if (find_fcch_burst(in, ninput_items[0])) {
- if (abs(d_freq_offset) > 100.0) {
- set_frequency(d_freq_offset);
+ case next_fcch_search: { //this state is used because it takes a bunch of buffered samples
+ //before previous set_frequqency cause change
+ float prev_freq_offset = d_freq_offset;
+ if (find_fcch_burst(input, nitems_items[0])) {
+ if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET) {
+ set_frequency(d_freq_offset); //call set_frequncy only frequency offset change is greater than some value
}
- d_samples_counter = 0;
- produced_out = 0;
+ //produced_out = 0;
d_state = sch_search;
} else {
- produced_out = 0;
+ //produced_out = 0;
d_state = next_fcch_search;
}
break;
-
+ }
case sch_search: {
- gr_complex chan_imp_resp[CHAN_IMP_RESP_LENGTH*d_OSR];
+ vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
int t1, t2, t3;
int burst_start = 0;
unsigned char output_binary[BURST_SIZE];
- if (find_sch_burst(in, ninput_items[0], out)) {
- burst_start = get_sch_chan_imp_resp(in, chan_imp_resp);
- detect_burst(in, chan_imp_resp, burst_start, output_binary);
- if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) {
+ if (find_sch_burst(nitems_items[0])) { //wait for a SCH burst
+ burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it
+ detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection
+ if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { //decode SCH burst
DCOUT("sch burst_start: " << burst_start);
- d_burst_nr.set(t1, t2, t3, 0);
- DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
- d_channel_conf.set_multiframe_type(TSC0, multiframe_51);
- konfiguruj_odbiornik();//!!
- d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);
- d_channel_conf.set_burst_types(TSC0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst);
- d_channel_conf.set_burst_types(TSC0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst);
+ DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
+ d_burst_nr.set(t1, t2, t3, 0); //set counter of bursts value
+
+ //configure the receiver - tell him where to find which burst type
+ d_channel_conf.set_multiframe_type(TSC0, multiframe_51); //in the timeslot nr.0 (TSC0) bursts changes according to t3 counter
+ konfiguruj_odbiornik();//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
+ d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst); //tell where to find fcch bursts
+ d_channel_conf.set_burst_types(TSC0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst); //sch bursts
+ d_channel_conf.set_burst_types(TSC0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst);//!and maybe normal bursts of the BCCH logical channel
d_burst_nr++;
- consume_each(burst_start + BURST_SIZE * d_OSR);
+ consume_each(burst_start + BURST_SIZE * d_OSR); //consume samples up to next guard period
d_state = synchronized;
} else {
- d_state = next_fcch_search;
+ d_state = next_fcch_search; //if there is error in the sch burst go back to fcch search phase
}
} else {
d_state = sch_search;
@@ -211,38 +213,32 @@ gsm_receiver_cf::general_work(int noutput_items,
//in this state receiver is synchronized and it processes bursts according to burst type for given burst number
case synchronized: {
- gr_complex chan_imp_resp[d_chan_imp_length*d_OSR];
- burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr);
+ vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
int burst_start;
int offset = 0;
int to_consume = 0;
unsigned char output_binary[BURST_SIZE];
+ burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number
+
switch (b_type) {
case fcch_burst: {
- int ii;
- int first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
- int last_sample = first_sample + USEFUL_BITS * d_OSR;
- double phase_sum = 0;
- for (ii = first_sample; ii < last_sample; ii++) {
- double phase_diff = compute_phase_diff(in[ii], in[ii-1]) - (M_PI / 2) / d_OSR;
- phase_sum += phase_diff;
- }
- double freq_offset = compute_freq_offset(phase_sum, last_sample - first_sample);
+ const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
+ const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR;
+ double freq_offset = compute_freq_offset(input, first_sample, last_sample);
if (abs(freq_offset) > FCCH_MAX_FREQ_OFFSET) {
d_freq_offset -= freq_offset;
set_frequency(d_freq_offset);
- DCOUT("adjusting frequency, new frequency offset: " << d_freq_offset << "\n");
+ DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n");
}
}
break;
-
- case sch_burst: {
+ case sch_burst: {
int t1, t2, t3, d_ncc, d_bcc;
- burst_start = get_sch_chan_imp_resp(in, chan_imp_resp);
- detect_burst(in, &d_channel_imp_resp[0], burst_start, output_binary);
+ burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]);
+ detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) {
-// d_burst_nr.set(t1, t2, t3, 0);
+ // d_burst_nr.set(t1, t2, t3, 0);
DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
offset = burst_start - floor((GUARD_PERIOD) * d_OSR);
DCOUT(offset);
@@ -251,10 +247,10 @@ gsm_receiver_cf::general_work(int noutput_items,
}
break;
- case normal_burst:
- burst_start = get_norm_chan_imp_resp(in, chan_imp_resp, TRAIN_SEARCH_RANGE, d_bcc);
- detect_burst(in, &d_channel_imp_resp[0], burst_start, output_binary);
- przetwarzaj_normalny_pakiet(d_burst_nr, output_binary);
+ case normal_burst: //?
+ burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TRAIN_SEARCH_RANGE, d_bcc);
+ detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
+ przetwarzaj_normalny_pakiet(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
break;
case rach_burst:
@@ -264,18 +260,17 @@ gsm_receiver_cf::general_work(int noutput_items,
//to C0 (where sch is) back and forth
break;
- case dummy:
- burst_start = get_norm_chan_imp_resp(in, chan_imp_resp, TRAIN_SEARCH_RANGE, 8);
- detect_burst(in, &d_channel_imp_resp[0], burst_start, output_binary);
+ case dummy: //?
+ burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TRAIN_SEARCH_RANGE, 8);
+ detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
break;
case empty:
break;
}
- d_burst_nr++;
-
+ d_burst_nr++; //?
- to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset();
+ to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset(); //?
consume_each(to_consume);
}
break;
@@ -284,29 +279,28 @@ gsm_receiver_cf::general_work(int noutput_items,
return produced_out;
}
-bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems)
+bool gsm_receiver_cf::find_fcch_burst(const gr_complex *input, const int nitems)
{
circular_buffer_float phase_diff_buffer(FCCH_BUFFER_SIZE * d_OSR);
float phase_diff = 0;
gr_complex conjprod;
+ int start_pos = -1;
int hit_count = 0;
int miss_count = 0;
- int start_pos = -1;
float min_phase_diff;
float max_phase_diff;
double best_sum = 0;
float lowest_max_min_diff = 99999;
-
int to_consume = 0;
int sample_number = 0;
bool end = false;
bool result = false;
- double freq_offset;
circular_buffer_float::iterator buffer_iter;
+ //?
enum states {
- init, search, found_something, fcch_found, search_fail
+ init, search, found_something, fcch_found, search_fail //?
} fcch_search_state;
fcch_search_state = init;
@@ -331,7 +325,7 @@ bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems)
to_consume = sample_number;
fcch_search_state = search_fail;
} else {
- phase_diff = compute_phase_diff(in[sample_number], in[sample_number-1]);
+ phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
if (phase_diff > 0) {
to_consume = sample_number;
@@ -343,65 +337,69 @@ bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems)
break;
- case found_something:
- if (phase_diff > 0) {
- hit_count++;
- } else {
- miss_count++;
- }
+ case found_something: {
- if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) {
- fcch_search_state = init;
- continue;
- } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) {
- fcch_search_state = fcch_found;
- continue;
- } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) {
- //find difference between minimal and maximal element in the buffer
- //for FCCH this value should be low
- //this part is searching for a region where this value is lowest
- min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
- max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
-
- if (lowest_max_min_diff > max_phase_diff - min_phase_diff) {
- lowest_max_min_diff = max_phase_diff - min_phase_diff;
- start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR;
- best_sum = 0;
-
- for (buffer_iter = phase_diff_buffer.begin();
- buffer_iter != (phase_diff_buffer.end());
- buffer_iter++) {
- best_sum += *buffer_iter - (M_PI / 2) / d_OSR;
- }
+ if (phase_diff > 0) {
+ hit_count++;
+ } else {
+ miss_count++;
}
- }
- sample_number++;
+ if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) {
+ fcch_search_state = init;
+ continue;
+ } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) {
+ fcch_search_state = fcch_found;
+ continue;
+ } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) {
+ //find difference between minimal and maximal element in the buffer
+ //for FCCH this value should be low
+ //this part is searching for a region where this value is lowest
+ min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
+ max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
+
+ if (lowest_max_min_diff > max_phase_diff - min_phase_diff) {
+ lowest_max_min_diff = max_phase_diff - min_phase_diff;
+ start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR;
+ best_sum = 0;
+
+ for (buffer_iter = phase_diff_buffer.begin();
+ buffer_iter != (phase_diff_buffer.end());
+ buffer_iter++) {
+ best_sum += *buffer_iter - (M_PI / 2) / d_OSR;
+ }
+ }
+ }
- if (sample_number >= nitems) {
- fcch_search_state = search_fail;
- continue;
- }
+ sample_number++;
- phase_diff = compute_phase_diff(in[sample_number], in[sample_number-1]);
- phase_diff_buffer.push_back(phase_diff);
- fcch_search_state = found_something;
+ if (sample_number >= nitems) {
+ fcch_search_state = search_fail;
+ continue;
+ }
+ phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
+ phase_diff_buffer.push_back(phase_diff);
+ fcch_search_state = found_something;
+ }
break;
- case fcch_found:
-// DCOUT("fcch found on position: " << d_samples_counter + start_pos);
- DCOUT("fcch found on position: " << start_pos);
- to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1;
+ case fcch_found: {
+ DCOUT("fcch found on position: " << d_counter + start_pos);
+ to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1;
-// d_fcch_start_pos = d_samples_counter + start_pos;
- freq_offset = compute_freq_offset(best_sum, FCCH_HITS_NEEDED);
- d_freq_offset -= freq_offset;
- DCOUT("freq_offset: " << d_freq_offset);
+ d_fcch_start_pos = d_counter + start_pos;
- end = true;
- result = true;
- break;
+ //compute frequency offset
+ double phase_offset = best_sum / FCCH_HITS_NEEDED;
+ double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
+ d_freq_offset -= freq_offset;
+ DCOUT("freq_offset: " << d_freq_offset);
+
+ end = true;
+ result = true;
+ break;
+ }
case search_fail:
end = true;
@@ -410,17 +408,24 @@ bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems)
}
}
-// d_samples_counter += to_consume;
+ d_counter += to_consume;
consume_each(to_consume);
return result;
}
-double gsm_receiver_cf::compute_freq_offset(double best_sum, unsigned denominator)
+double gsm_receiver_cf::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample)
{
- float phase_offset, freq_offset;
- phase_offset = best_sum / denominator;
- freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
+ double phase_sum = 0;
+ unsigned ii;
+
+ for (ii = first_sample; ii < last_sample; ii++) {
+ double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR;
+ phase_sum += phase_diff;
+ }
+
+ double phase_offset = phase_sum / (last_sample - first_sample);
+ double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
return freq_offset;
}
@@ -435,14 +440,13 @@ inline float gsm_receiver_cf::compute_phase_diff(gr_complex val1, gr_complex val
return gr_fast_atan2f(imag(conjprod), real(conjprod));
}
-bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , float *out)
+bool gsm_receiver_cf::find_sch_burst(const int nitems)
{
int to_consume = 0;
bool end = false;
bool result = false;
-// unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;
- const unsigned sample_nr_near_sch_start = (FRAME_BITS - SAFETY_MARGIN + TS_BITS) * d_OSR;
-
+ unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;
+
enum states {
start, reach_sch, search_not_finished, sch_found
} sch_search_state;
@@ -453,7 +457,7 @@ bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , fl
switch (sch_search_state) {
case start:
- if (d_samples_counter < sample_nr_near_sch_start) {
+ if (d_counter < sample_nr_near_sch_start) {
sch_search_state = reach_sch;
} else {
sch_search_state = sch_found;
@@ -461,8 +465,8 @@ bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , fl
break;
case reach_sch:
- if (d_samples_counter + nitems >= sample_nr_near_sch_start) {
- to_consume = sample_nr_near_sch_start - d_samples_counter;
+ if (d_counter + nitems >= sample_nr_near_sch_start) {
+ to_consume = sample_nr_near_sch_start - d_counter;
} else {
to_consume = nitems;
}
@@ -482,12 +486,12 @@ bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , fl
}
}
- d_samples_counter += to_consume;
+ d_counter += to_consume;
consume_each(to_consume);
return result;
}
-int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * chan_imp_resp)
+int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp)
{
vector_complex correlation_buffer;
vector_float power_buffer;
@@ -500,7 +504,7 @@ int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * ch
float energy = 0;
for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++) {
- gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], &in[ii], N_SYNC_BITS - 10);
+ gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]);
correlation_buffer.push_back(correlation);
power_buffer.push_back(pow(abs(correlation), 2));
}
@@ -527,7 +531,7 @@ int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * ch
}
strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
- d_channel_imp_resp.clear();
+// d_channel_imp_resp.clear();
max_correlation = 0;
for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++) {
@@ -536,7 +540,7 @@ int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * ch
chan_imp_resp_center = ii;
max_correlation = abs(correlation);
}
- d_channel_imp_resp.push_back(correlation);
+// d_channel_imp_resp.push_back(correlation);
chan_imp_resp[ii] = correlation;
}
@@ -544,7 +548,7 @@ int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * ch
return burst_start;
}
-void gsm_receiver_cf::detect_burst(const gr_complex * in, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
+void gsm_receiver_cf::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
{
float output[BURST_SIZE];
gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR];
@@ -558,7 +562,7 @@ void gsm_receiver_cf::detect_burst(const gr_complex * in, gr_complex * chan_imp_
rhh[ii] = conj(rhh_temp[ii*d_OSR]);
}
- mafi(&in[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);
+ mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);
viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output);
@@ -568,7 +572,7 @@ void gsm_receiver_cf::detect_burst(const gr_complex * in, gr_complex * chan_imp_
}
//TODO consider placing this funtion in a separate class for signal processing
-void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int ninput, gr_complex * gmsk_output, gr_complex start_point)
+void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point)
{
gr_complex j = gr_complex(0.0, 1.0);
@@ -577,7 +581,7 @@ void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int ninput, gr_co
int previous_symbol = 2 * input[0] - 1;
gmsk_output[0] = start_point;
- for (int i = 1; i < ninput; i++) {
+ for (int i = 1; i < nitems; i++) {
//change bits representation to NRZ
current_symbol = 2 * input[i] - 1;
//differentially encode
@@ -589,45 +593,45 @@ void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int ninput, gr_co
}
//TODO consider use of some generalized function for correlation and placing it in a separate class for signal processing
-gr_complex gsm_receiver_cf::correlate_sequence(const gr_complex * sequence, const gr_complex * input_signal, int length)
+gr_complex gsm_receiver_cf::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input)
{
gr_complex result(0.0, 0.0);
int sample_number = 0;
for (int ii = 0; ii < length; ii++) {
sample_number = (ii * d_OSR) ;
- result += sequence[ii] * conj(input_signal[sample_number]);
+ result += sequence[ii] * conj(input[sample_number]);
}
result = result / gr_complex(length, 0);
return result;
}
-//computes autocorrelation for positive values
+//computes autocorrelation for positive arguments
//TODO consider placing this funtion in a separate class for signal processing
-inline void gsm_receiver_cf::autocorrelation(const gr_complex * input, gr_complex * out, int length)
+inline void gsm_receiver_cf::autocorrelation(const gr_complex * input, gr_complex * out, int nitems)
{
int i, k;
- for (k = length - 1; k >= 0; k--) {
+ for (k = nitems - 1; k >= 0; k--) {
out[k] = gr_complex(0, 0);
- for (i = k; i < length; i++) {
+ for (i = k; i < nitems; i++) {
out[k] += input[i] * conj(input[i-k]);
}
}
}
//TODO consider use of some generalized function for filtering and placing it in a separate class for signal processing
-inline void gsm_receiver_cf::mafi(const gr_complex * input, int input_length, gr_complex * filter, int filter_length, gr_complex * output)
+inline void gsm_receiver_cf::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output)
{
int ii = 0, n, a;
- for (n = 0; n < input_length; n++) {
+ for (n = 0; n < nitems; n++) {
a = n * d_OSR;
output[n] = 0;
ii = 0;
while (ii < filter_length) {
- if ((a + ii) >= input_length*d_OSR)
+ if ((a + ii) >= nitems*d_OSR)
break;
output[n] += input[a+ii] * filter[ii];
ii++;
@@ -635,7 +639,7 @@ inline void gsm_receiver_cf::mafi(const gr_complex * input, int input_length, gr
}
}
-int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *in, gr_complex * chan_imp_resp, unsigned search_range, int bcc)
+int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, unsigned search_range, int bcc)
{
vector_complex correlation_buffer;
vector_float power_buffer;
@@ -652,7 +656,7 @@ int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *in, gr_complex * c
int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR;
for (int ii = search_start_pos; ii < search_stop_pos; ii++) {
- gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], &in[ii], N_TRAIN_BITS - 10);
+ gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]);
correlation_buffer.push_back(correlation);
power_buffer.push_back(pow(abs(correlation), 2));
@@ -681,7 +685,7 @@ int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *in, gr_complex * c
}
strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
- d_channel_imp_resp.clear();
+// d_channel_imp_resp.clear();
max_correlation = 0;
for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++) {
@@ -690,7 +694,7 @@ int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *in, gr_complex * c
chan_imp_resp_center = ii;
max_correlation = abs(correlation);
}
- d_channel_imp_resp.push_back(correlation);
+// d_channel_imp_resp.push_back(correlation);
chan_imp_resp[ii] = correlation;
}
// We want to use the first sample of the impulseresponse, and the
personal git repositories of Harald Welte. Your mileage may vary