summaryrefslogtreecommitdiff
path: root/src/lib/gsm_receiver_cf.cc
diff options
context:
space:
mode:
authorPiotr Krysik <perper@o2.pl>2009-06-30 23:03:33 +0200
committerPiotr Krysik <perper@o2.pl>2009-06-30 23:03:33 +0200
commit8d2bc49fb9e0c9a5fbd75aa3cad207608e72bf99 (patch)
treea32fdcd2e8e2b16cc725045d049ed94b3f675956 /src/lib/gsm_receiver_cf.cc
parent8f97a59b21fd8d3ecd111ee770932d852e625d52 (diff)
moved gsm-receiver into directory - preparation to move to airprobe
Diffstat (limited to 'src/lib/gsm_receiver_cf.cc')
-rw-r--r--src/lib/gsm_receiver_cf.cc853
1 files changed, 0 insertions, 853 deletions
diff --git a/src/lib/gsm_receiver_cf.cc b/src/lib/gsm_receiver_cf.cc
deleted file mode 100644
index 4742b33..0000000
--- a/src/lib/gsm_receiver_cf.cc
+++ /dev/null
@@ -1,853 +0,0 @@
-/* -*- c++ -*- */
-/*
- * @file
- * @author Piotr Krysik <pkrysik@stud.elka.pw.edu.pl>
- * @section LICENSE
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3, or (at your option)
- * any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; see the file COPYING. If not, write to
- * the Free Software Foundation, Inc., 51 Franklin Street,
- * Boston, MA 02110-1301, USA.
- */
-
-#ifdef HAVE_CONFIG_H
-#include "config.h"
-#endif
-
-#include <gr_io_signature.h>
-#include <gr_math.h>
-#include <math.h>
-#include <Assert.h>
-#include <boost/circular_buffer.hpp>
-#include <algorithm>
-#include <numeric>
-#include <gsm_receiver_cf.h>
-#include <viterbi_detector.h>
-#include <string.h>
-#include <sch.h>
-
-
-#include "RxBurst.h"
-#include "GSMCommon.h"
-
-#define SYNC_SEARCH_RANGE 30
-// #define TRAIN_SEARCH_RANGE 40
-//FIXME: decide to use this define or not
-
-//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
-void decrypt(const unsigned char * burst_binary, byte * KC, float * decrypted_data, unsigned FN)
-{
- byte AtoB[2*DATA_BITS];
-
- keysetup(KC, FN);
- runA51(AtoB);
-
- for (int i = 0; i < 148; i++) {
- decrypted_data[i] = burst_binary[i];
- }
-
- for (int i = 0; i < 57; i++) {
- decrypted_data[i+3] = AtoB[i] ^ burst_binary[i+3];
- }
-
- for (int i = 0; i < 57; i++) {
- decrypted_data[i+88] = AtoB[i+57] ^ burst_binary[i+88];
- }
-}
-
-void gsm_receiver_cf::read_key(std::string key)
-{
- int i;
- int b;
- for (i = 0;i < 8;i++) {
- b = d_hex_to_int[(char)key[(i)*2]]*16 + d_hex_to_int[(char)key[i*2+1]];
- d_KC[i] = (byte)b;
- }
-}
-
-void gsm_receiver_cf::process_normal_burst(burst_counter burst_nr, const unsigned char * burst_binary)
-{
-// static byte KC[] = { 0xAD, 0x6A, 0x3E, 0xC2, 0xB4, 0x42, 0xE4, 0x00 };
-// static byte KC[] = { 0x2B, 0x08, 0x74, 0x9F, 0xDD, 0x0D, 0x9C, 0x00 };
-// printf("%x", KC[0]);
- float decrypted_data[148];
- unsigned char * voice_frame;
-
-// if (burst_nr.get_timeslot_nr() == 7) {
- if (burst_nr.get_timeslot_nr() >= 1 && burst_nr.get_timeslot_nr() <= 7) {
- decrypt(burst_binary, d_KC, decrypted_data, burst_nr.get_frame_nr_mod());
-
- GSM::Time time(burst_nr.get_frame_nr(), burst_nr.get_timeslot_nr());
- GSM::RxBurst rxbrst(decrypted_data, time);
- switch (burst_nr.get_timeslot_nr()) {
- case 1:
- if ( d_tch_decoder1.processBurst( rxbrst ) == true) {
- fwrite(d_tch_decoder1.get_voice_frame(), 1 , 33, d_gsm_file);
- }
- break;
- case 2:
- if ( d_tch_decoder2.processBurst( rxbrst ) == true) {
- fwrite(d_tch_decoder2.get_voice_frame(), 1 , 33, d_gsm_file);
- }
- break;
- case 3:
- if ( d_tch_decoder3.processBurst( rxbrst ) == true) {
- fwrite(d_tch_decoder3.get_voice_frame(), 1 , 33, d_gsm_file);
- }
- break;
- case 4:
- if ( d_tch_decoder4.processBurst( rxbrst ) == true) {
- fwrite(d_tch_decoder4.get_voice_frame(), 1 , 33, d_gsm_file);
- }
- break;
- case 5:
- if ( d_tch_decoder5.processBurst( rxbrst ) == true) {
- fwrite(d_tch_decoder5.get_voice_frame(), 1 , 33, d_gsm_file);
- }
- break;
- case 6:
- if ( d_tch_decoder6.processBurst( rxbrst ) == true) {
- fwrite(d_tch_decoder6.get_voice_frame(), 1 , 33, d_gsm_file);
- }
- break;
- case 7:
- if ( d_tch_decoder7.processBurst( rxbrst ) == true) {
- fwrite(d_tch_decoder7.get_voice_frame(), 1 , 33, d_gsm_file);
- }
- break;
- }
- }
-
- if (burst_nr.get_timeslot_nr() == 0) {
- GS_process(&d_gs_ctx, TIMESLOT0, 6, &burst_binary[3], burst_nr.get_frame_nr());
- }
-}
-//TODO: this shouldn't be here also - the same reason
-void gsm_receiver_cf::configure_receiver()
-{
- d_channel_conf.set_multiframe_type(TSC0, multiframe_51);
-
- d_channel_conf.set_burst_types(TSC0, TEST_CCH_FRAMES, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), normal_burst);
- d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);
-
- d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_26);
- d_channel_conf.set_burst_types(TIMESLOT1, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
- d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_26);
- d_channel_conf.set_burst_types(TIMESLOT2, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
-
- d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_26);
- d_channel_conf.set_burst_types(TIMESLOT3, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
- d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_26);
- d_channel_conf.set_burst_types(TIMESLOT4, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
-
- d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_26);
- d_channel_conf.set_burst_types(TIMESLOT5, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
- d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_26);
- d_channel_conf.set_burst_types(TIMESLOT6, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
-
- d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_26);
- d_channel_conf.set_burst_types(TIMESLOT7, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
-
-}
-
-
-typedef std::list<float> list_float;
-typedef std::vector<float> vector_float;
-
-typedef boost::circular_buffer<float> circular_buffer_float;
-
-gsm_receiver_cf_sptr
-gsm_make_receiver_cf(gr_feval_dd *tuner, gr_feval_dd *synchronizer, int osr, std::string key)
-{
- return gsm_receiver_cf_sptr(new gsm_receiver_cf(tuner, synchronizer, osr, key));
-}
-
-static const int MIN_IN = 1; // mininum number of input streams
-static const int MAX_IN = 1; // maximum number of input streams
-static const int MIN_OUT = 0; // minimum number of output streams
-static const int MAX_OUT = 1; // maximum number of output streams
-
-/*
- * The private constructor
- */
-gsm_receiver_cf::gsm_receiver_cf(gr_feval_dd *tuner, gr_feval_dd *synchronizer, int osr, std::string key)
- : gr_block("gsm_receiver",
- gr_make_io_signature(MIN_IN, MAX_IN, sizeof(gr_complex)),
- gr_make_io_signature(MIN_OUT, MAX_OUT, 142 * sizeof(float))),
- d_OSR(osr),
- d_chan_imp_length(CHAN_IMP_RESP_LENGTH),
- d_tuner(tuner),
- d_counter(0),
- d_fcch_start_pos(0),
- d_freq_offset(0),
- d_state(first_fcch_search),
- d_burst_nr(osr),
- d_failed_sch(0),
- d_tch_decoder1( GSM::gFACCH_TCHFMapping ),
- d_tch_decoder2( GSM::gFACCH_TCHFMapping ),
- d_tch_decoder3( GSM::gFACCH_TCHFMapping ),
- d_tch_decoder4( GSM::gFACCH_TCHFMapping ),
- d_tch_decoder5( GSM::gFACCH_TCHFMapping ),
- d_tch_decoder6( GSM::gFACCH_TCHFMapping ),
- d_tch_decoder7( GSM::gFACCH_TCHFMapping )
-{
- int i;
- gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0));
- for (i = 0; i < TRAIN_SEQ_NUM; i++) {
- gr_complex startpoint;
- if (i == 6) { //this is nasty hack
- startpoint = gr_complex(-1.0, 0.0); //if I don't change it here all bits of normal bursts for BTSes with bcc=6 will have reversed values
- } else {
- startpoint = gr_complex(1.0, 0.0); //I've checked this hack for bcc==0,1,2,3,4,6
- } //I don't know what about bcc==5 and 7 yet
- //TODO:find source of this situation - this is purely mathematical problem I guess
-
- gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], startpoint);
- }
- d_gsm_file = fopen( "speech.gsm", "wb" );
-
- d_hex_to_int['0'] = 0;
- d_hex_to_int['4'] = 4;
- d_hex_to_int['8'] = 8;
- d_hex_to_int['c'] = 0xc;
- d_hex_to_int['1'] = 1;
- d_hex_to_int['5'] = 5;
- d_hex_to_int['9'] = 9;
- d_hex_to_int['d'] = 0xd;
- d_hex_to_int['2'] = 2;
- d_hex_to_int['6'] = 6;
- d_hex_to_int['a'] = 0xa;
- d_hex_to_int['e'] = 0xe;
- d_hex_to_int['3'] = 3;
- d_hex_to_int['7'] = 7;
- d_hex_to_int['b'] = 0xb;
- d_hex_to_int['f'] = 0xf;
- read_key(key);
- /* Initialize GSM Stack */
- GS_new(&d_gs_ctx); //TODO: remove it! it's not a right place for a decoder
-}
-
-/*
- * Virtual destructor.
- */
-gsm_receiver_cf::~gsm_receiver_cf()
-{
-}
-
-void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &nitems_items_required)
-{
- nitems_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR);
-}
-
-int
-gsm_receiver_cf::general_work(int noutput_items,
- gr_vector_int &nitems_items,
- gr_vector_const_void_star &input_items,
- gr_vector_void_star &output_items)
-{
- const gr_complex *input = (const gr_complex *) input_items[0];
- //float *out = (float *) output_items[0];
- int produced_out = 0; //how many output elements were produced - this isn't used yet
- //probably the gsm receiver will be changed into sink so this variable won't be necessary
-
- switch (d_state) {
- //bootstrapping
- case first_fcch_search:
- if (find_fcch_burst(input, nitems_items[0])) { //find frequency correction burst in the input buffer
- set_frequency(d_freq_offset); //if fcch search is successful set frequency offset
- //produced_out = 0;
- d_state = next_fcch_search;
- } else {
- //produced_out = 0;
- d_state = first_fcch_search;
- }
- break;
-
- case next_fcch_search: { //this state is used because it takes some time (a bunch of buffered samples)
- float prev_freq_offset = d_freq_offset; //before previous set_frequqency cause change
- if (find_fcch_burst(input, nitems_items[0])) {
- if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET) {
- set_frequency(d_freq_offset); //call set_frequncy only frequency offset change is greater than some value
- }
- //produced_out = 0;
- d_state = sch_search;
- } else {
- //produced_out = 0;
- d_state = next_fcch_search;
- }
- break;
- }
-
- case sch_search: {
- vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
- int t1, t2, t3;
- int burst_start = 0;
- unsigned char output_binary[BURST_SIZE];
-
- if (reach_sch_burst(nitems_items[0])) { //wait for a SCH burst
- burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it
- detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection
- if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { //decode SCH burst
- DCOUT("sch burst_start: " << burst_start);
- DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
- d_burst_nr.set(t1, t2, t3, 0); //set counter of bursts value
-
- //configure the receiver - tell him where to find which burst type
- d_channel_conf.set_multiframe_type(TIMESLOT0, multiframe_51); //in the timeslot nr.0 bursts changes according to t3 counter
- configure_receiver();//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
- d_channel_conf.set_burst_types(TIMESLOT0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst); //tell where to find fcch bursts
- d_channel_conf.set_burst_types(TIMESLOT0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst); //sch bursts
- d_channel_conf.set_burst_types(TIMESLOT0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst);//!and maybe normal bursts of the BCCH logical channel
- d_burst_nr++;
-
- consume_each(burst_start + BURST_SIZE * d_OSR); //consume samples up to next guard period
- d_state = synchronized;
- } else {
- d_state = next_fcch_search; //if there is error in the sch burst go back to fcch search phase
- }
- } else {
- d_state = sch_search;
- }
- break;
- }
- //in this state receiver is synchronized and it processes bursts according to burst type for given burst number
- case synchronized: {
- vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
- int burst_start;
- int offset = 0;
- int to_consume = 0;
- unsigned char output_binary[BURST_SIZE];
-
- burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number
-
- switch (b_type) {
- case fcch_burst: { //if it's FCCH burst
- const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
- const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR - TAIL_BITS * d_OSR;
- double freq_offset = compute_freq_offset(input, first_sample, last_sample); //extract frequency offset from it
-
- d_freq_offset_vals.push_front(freq_offset);
-
- if (d_freq_offset_vals.size() >= 10) {
- double sum = std::accumulate(d_freq_offset_vals.begin(), d_freq_offset_vals.end(), 0);
- double mean_offset = sum / d_freq_offset_vals.size(); //compute mean
- d_freq_offset_vals.clear();
- if (abs(mean_offset) > FCCH_MAX_FREQ_OFFSET) {
- d_freq_offset -= mean_offset; //and adjust frequency if it have changed beyond
- set_frequency(d_freq_offset); //some limit
- DCOUT("mean_offset: " << mean_offset);
- DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n");
- }
- }
- }
- break;
- case sch_burst: { //if it's SCH burst
- int t1, t2, t3, d_ncc, d_bcc;
- burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response
- detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //MLSE detection of bits
- if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { //and decode SCH data
- // d_burst_nr.set(t1, t2, t3, 0); //but only to check if burst_start value is correct
- d_failed_sch = 0;
- DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
- offset = burst_start - floor((GUARD_PERIOD) * d_OSR); //compute offset from burst_start - burst should start after a guard period
- DCOUT(offset);
- to_consume += offset; //adjust with offset number of samples to be consumed
- } else {
- d_failed_sch++;
- if (d_failed_sch >= MAX_SCH_ERRORS) {
-// d_state = next_fcch_search; //TODO: this isn't good, the receiver is going wild when it goes back to next_fcch_search from here
-// d_freq_offset_vals.clear();
- DCOUT("many sch decoding errors");
- }
- }
- }
- break;
-
- case normal_burst: //if it's normal burst
- burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], d_bcc); //get channel impulse response for given training sequence number - d_bcc
- detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //MLSE detection of bits
- process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
- break;
-
- case dummy_or_normal: {
- burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TS_DUMMY);
- detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
-
- std::vector<unsigned char> v(20);
- std::vector<unsigned char>::iterator it;
- it = std::set_difference(output_binary + TRAIN_POS, output_binary + TRAIN_POS + 16, &train_seq[TS_DUMMY][5], &train_seq[TS_DUMMY][21], v.begin());
- int different_bits = (it - v.begin());
-
- if (different_bits > 2) {
- burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], d_bcc);
- detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
- if (!output_binary[0] && !output_binary[1] && !output_binary[2]) {
- process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
- }
- }
- }
- case rach_burst:
- //implementation of this channel isn't possible in current gsm_receiver
- //it would take some realtime processing, counter of samples from USRP to
- //stay synchronized with this device and possibility to switch frequency from uplink
- //to C0 (where sch is) back and forth
-
- break;
- case dummy: //if it's dummy
- burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TS_DUMMY); //read dummy
- detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); // but as far as I know it's pointless
- break;
- case empty: //if it's empty burst
- break; //do nothing
- }
-
- d_burst_nr++; //go to next burst
-
- to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset(); //consume samples of the burst up to next guard period
- //and add offset which is introduced by
- //0.25 fractional part of a guard period
- //burst_number computes this offset
- //but choice of this class to do this was random
- consume_each(to_consume);
- }
- break;
- }
-
- return produced_out;
-}
-
-bool gsm_receiver_cf::find_fcch_burst(const gr_complex *input, const int nitems)
-{
- circular_buffer_float phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find
- //best match for FCCH burst
- float phase_diff = 0;
- gr_complex conjprod;
- int start_pos = -1;
- int hit_count = 0;
- int miss_count = 0;
- float min_phase_diff;
- float max_phase_diff;
- double best_sum = 0;
- float lowest_max_min_diff = 99999;
-
- int to_consume = 0;
- int sample_number = 0;
- bool end = false;
- bool result = false;
- circular_buffer_float::iterator buffer_iter;
-
- /**@name Possible states of FCCH search algorithm*/
- //@{
- enum states {
- init, ///< initialize variables
- search, ///< search for positive samples
- found_something, ///< search for FCCH and the best position of it
- fcch_found, ///< when FCCH was found
- search_fail ///< when there is no FCCH in the input vector
- } fcch_search_state;
- //@}
-
- fcch_search_state = init;
-
- while (!end) {
- switch (fcch_search_state) {
-
- case init: //initialize variables
- hit_count = 0;
- miss_count = 0;
- start_pos = -1;
- lowest_max_min_diff = 99999;
- phase_diff_buffer.clear();
- fcch_search_state = search;
-
- break;
-
- case search: // search for positive samples
- sample_number++;
-
- if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR) { //if it isn't possible to find FCCH because
- //there's too few samples left to look into,
- to_consume = sample_number; //don't do anything with those samples which are left
- //and consume only those which were checked
- fcch_search_state = search_fail;
- } else {
- phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
-
- if (phase_diff > 0) { //if a positive phase difference was found
- to_consume = sample_number;
- fcch_search_state = found_something; //switch to state in which searches for FCCH
- } else {
- fcch_search_state = search;
- }
- }
-
- break;
-
- case found_something: {// search for FCCH and the best position of it
- if (phase_diff > 0) {
- hit_count++; //positive phase differencies increases hits_count
- } else {
- miss_count++; //negative increases miss_count
- }
-
- if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) {
- //if miss_count exceeds limit before hit_count
- fcch_search_state = init; //go to init
- continue;
- } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) {
- //if hit_count and miss_count exceeds limit then FCCH was found
- fcch_search_state = fcch_found;
- continue;
- } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) {
- //find difference between minimal and maximal element in the buffer
- //for FCCH this value should be low
- //this part is searching for a region where this value is lowest
- min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
- max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
-
- if (lowest_max_min_diff > max_phase_diff - min_phase_diff) {
- lowest_max_min_diff = max_phase_diff - min_phase_diff;
- start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos
- best_sum = 0;
-
- for (buffer_iter = phase_diff_buffer.begin();
- buffer_iter != (phase_diff_buffer.end());
- buffer_iter++) {
- best_sum += *buffer_iter - (M_PI / 2) / d_OSR; //store best value of phase offset sum
- }
- }
- }
-
- sample_number++;
-
- if (sample_number >= nitems) { //if there's no single sample left to check
- fcch_search_state = search_fail;//FCCH search failed
- continue;
- }
-
- phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
- phase_diff_buffer.push_back(phase_diff);
- fcch_search_state = found_something;
- }
- break;
-
- case fcch_found: {
- DCOUT("fcch found on position: " << d_counter + start_pos);
- to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst
-
- d_fcch_start_pos = d_counter + start_pos;
-
- //compute frequency offset
- double phase_offset = best_sum / FCCH_HITS_NEEDED;
- double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
- d_freq_offset -= freq_offset;
- DCOUT("freq_offset: " << d_freq_offset);
-
- end = true;
- result = true;
- break;
- }
-
- case search_fail:
- end = true;
- result = false;
- break;
- }
- }
-
- d_counter += to_consume;
- consume_each(to_consume);
-
- return result;
-}
-
-double gsm_receiver_cf::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample)
-{
- double phase_sum = 0;
- unsigned ii;
-
- for (ii = first_sample; ii < last_sample; ii++) {
- double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR;
- phase_sum += phase_diff;
- }
-
- double phase_offset = phase_sum / (last_sample - first_sample);
- double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
- return freq_offset;
-}
-
-void gsm_receiver_cf::set_frequency(double freq_offset)
-{
- d_tuner->calleval(freq_offset);
-}
-
-inline float gsm_receiver_cf::compute_phase_diff(gr_complex val1, gr_complex val2)
-{
- gr_complex conjprod = val1 * conj(val2);
- return gr_fast_atan2f(imag(conjprod), real(conjprod));
-}
-
-bool gsm_receiver_cf::reach_sch_burst(const int nitems)
-{
- //it just consumes samples to get near to a SCH burst
- int to_consume = 0;
- bool result = false;
- unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;
-
- //consume samples until d_counter will be equal to sample_nr_near_sch_start
- if (d_counter < sample_nr_near_sch_start) {
- if (d_counter + nitems >= sample_nr_near_sch_start) {
- to_consume = sample_nr_near_sch_start - d_counter;
- } else {
- to_consume = nitems;
- }
- result = false;
- } else {
- to_consume = 0;
- result = true;
- }
-
- d_counter += to_consume;
- consume_each(to_consume);
- return result;
-}
-
-int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp)
-{
- vector_complex correlation_buffer;
- vector_float power_buffer;
- vector_float window_energy_buffer;
-
- int strongest_window_nr;
- int burst_start = 0;
- int chan_imp_resp_center = 0;
- float max_correlation = 0;
- float energy = 0;
-
- for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++) {
- gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]);
- correlation_buffer.push_back(correlation);
- power_buffer.push_back(pow(abs(correlation), 2));
- }
-
- //compute window energies
- vector_float::iterator iter = power_buffer.begin();
- bool loop_end = false;
- while (iter != power_buffer.end()) {
- vector_float::iterator iter_ii = iter;
- energy = 0;
-
- for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++) {
- if (iter_ii == power_buffer.end()) {
- loop_end = true;
- break;
- }
- energy += (*iter_ii);
- }
- if (loop_end) {
- break;
- }
- iter++;
- window_energy_buffer.push_back(energy);
- }
-
- strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
-// d_channel_imp_resp.clear();
-
- max_correlation = 0;
- for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++) {
- gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
- if (abs(correlation) > max_correlation) {
- chan_imp_resp_center = ii;
- max_correlation = abs(correlation);
- }
-// d_channel_imp_resp.push_back(correlation);
- chan_imp_resp[ii] = correlation;
- }
-
- burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR;
- return burst_start;
-}
-
-void gsm_receiver_cf::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
-{
- float output[BURST_SIZE];
- gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR];
- gr_complex rhh[CHAN_IMP_RESP_LENGTH];
- gr_complex filtered_burst[BURST_SIZE];
- int start_state = 3;
- unsigned int stop_states[2] = {4, 12};
-
- autocorrelation(chan_imp_resp, rhh_temp, d_chan_imp_length*d_OSR);
- for (int ii = 0; ii < (d_chan_imp_length); ii++) {
- rhh[ii] = conj(rhh_temp[ii*d_OSR]);
- }
-
- mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);
-
- viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output);
-
- for (int i = 0; i < BURST_SIZE ; i++) {
- output_binary[i] = (output[i] > 0);
- }
-}
-
-//TODO consider placing this funtion in a separate class for signal processing
-void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point)
-{
- gr_complex j = gr_complex(0.0, 1.0);
-
- int current_symbol;
- int encoded_symbol;
- int previous_symbol = 2 * input[0] - 1;
- gmsk_output[0] = start_point;
-
- for (int i = 1; i < nitems; i++) {
- //change bits representation to NRZ
- current_symbol = 2 * input[i] - 1;
- //differentially encode
- encoded_symbol = current_symbol * previous_symbol;
- //and do gmsk mapping
- gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1];
- previous_symbol = current_symbol;
- }
-}
-
-//TODO consider use of some generalized function for correlation and placing it in a separate class for signal processing
-gr_complex gsm_receiver_cf::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input)
-{
- gr_complex result(0.0, 0.0);
- int sample_number = 0;
-
- for (int ii = 0; ii < length; ii++) {
- sample_number = (ii * d_OSR) ;
- result += sequence[ii] * conj(input[sample_number]);
- }
-
- result = result / gr_complex(length, 0);
- return result;
-}
-
-//computes autocorrelation for positive arguments
-//TODO consider placing this funtion in a separate class for signal processing
-inline void gsm_receiver_cf::autocorrelation(const gr_complex * input, gr_complex * out, int nitems)
-{
- int i, k;
- for (k = nitems - 1; k >= 0; k--) {
- out[k] = gr_complex(0, 0);
- for (i = k; i < nitems; i++) {
- out[k] += input[i] * conj(input[i-k]);
- }
- }
-}
-
-//TODO consider use of some generalized function for filtering and placing it in a separate class for signal processing
-inline void gsm_receiver_cf::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output)
-{
- int ii = 0, n, a;
-
- for (n = 0; n < nitems; n++) {
- a = n * d_OSR;
- output[n] = 0;
- ii = 0;
-
- while (ii < filter_length) {
- if ((a + ii) >= nitems*d_OSR)
- break;
- output[n] += input[a+ii] * filter[ii];
- ii++;
- }
- }
-}
-
-//TODO: get_norm_chan_imp_resp is similar to get_sch_chan_imp_resp - consider joining this two functions
-//TODO: this is place where most errors are introduced and can be corrected by improvements to this fuction
-//especially computations of strongest_window_nr
-int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, int bcc)
-{
- vector_complex correlation_buffer;
- vector_float power_buffer;
- vector_float window_energy_buffer;
-
- int strongest_window_nr;
- int burst_start = 0;
- int chan_imp_resp_center = 0;
- float max_correlation = 0;
- float energy = 0;
-
- int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR);
- int search_start_pos = search_center + 1;
-// int search_start_pos = search_center - d_chan_imp_length * d_OSR;
- int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR;
-
- for (int ii = search_start_pos; ii < search_stop_pos; ii++) {
- gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]);
-
- correlation_buffer.push_back(correlation);
- power_buffer.push_back(pow(abs(correlation), 2));
- }
-
- //compute window energies
- vector_float::iterator iter = power_buffer.begin();
- bool loop_end = false;
- while (iter != power_buffer.end()) {
- vector_float::iterator iter_ii = iter;
- energy = 0;
-
- for (int ii = 0; ii < (d_chan_imp_length - 2)*d_OSR; ii++, iter_ii++) {
-// for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++, iter_ii++) {
- if (iter_ii == power_buffer.end()) {
- loop_end = true;
- break;
- }
- energy += (*iter_ii);
- }
- if (loop_end) {
- break;
- }
- iter++;
-
- window_energy_buffer.push_back(energy);
- }
- //!why doesn't this work
- strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
- strongest_window_nr = 3; //! so I have to override it here
-
- max_correlation = 0;
- for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++) {
- gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
- if (abs(correlation) > max_correlation) {
- chan_imp_resp_center = ii;
- max_correlation = abs(correlation);
- }
-// d_channel_imp_resp.push_back(correlation);
- chan_imp_resp[ii] = correlation;
- }
- // We want to use the first sample of the impulseresponse, and the
- // corresponding samples of the received signal.
- // the variable sync_w should contain the beginning of the used part of
- // training sequence, which is 3+57+1+6=67 bits into the burst. That is
- // we have that sync_t16 equals first sample in bit number 67.
-
- burst_start = search_start_pos + chan_imp_resp_center + strongest_window_nr - TRAIN_POS * d_OSR;
-
- // GMSK modulator introduces ISI - each bit is expanded for 3*Tb
- // and it's maximum value is in the last bit period, so burst starts
- // 2*Tb earlier
- burst_start -= 2 * d_OSR;
- burst_start += 2;
- //std::cout << " burst_start: " << burst_start << " center: " << ((float)(search_start_pos + strongest_window_nr + chan_imp_resp_center)) / d_OSR << " stronegest window nr: " << strongest_window_nr << "\n";
-
- return burst_start;
-}
-
personal git repositories of Harald Welte. Your mileage may vary