diff options
author | Andreas Bogk <andreas@pt141.(none)> | 2009-01-16 13:15:12 +0100 |
---|---|---|
committer | Andreas Bogk <andreas@pt141.(none)> | 2009-01-16 13:15:12 +0100 |
commit | cd41bd8ced5e11f2202221aadee725d2c6137d29 (patch) | |
tree | 03186f5360c0602c6ed9b89c2967b9b802c97512 /viterbi-detector | |
parent | d37c094f023f46ee405f1b23bdca5928e4bb5606 (diff) |
Sample generated viterbi detector.
Diffstat (limited to 'viterbi-detector')
-rw-r--r-- | viterbi-detector/test.cpp | 717 | ||||
-rw-r--r-- | viterbi-detector/viterbi_detector_lh4.cpp | 552 |
2 files changed, 1269 insertions, 0 deletions
diff --git a/viterbi-detector/test.cpp b/viterbi-detector/test.cpp new file mode 100644 index 0000000..7a1775b --- /dev/null +++ b/viterbi-detector/test.cpp @@ -0,0 +1,717 @@ +#include <stdio.h> +/* +** viterbi_detector: +** This part does the detection of received sequnece. +** Employed algorithm is viterbi Maximum Likehood Sequence Estimation. +** At this moment it gives hard decisions on the output, but +** it was designed with soft decisions in mind. +** +** SYNTAX: void viterbi_detector( +** const gr_complex * input, +** unsigned int samples_num, +** gr_complex * rhh, +** unsigned int start_state, +** const unsigned int * stop_states, +** unsigned int stops_num, +** float * output) +** +** INPUT: input: Complex received signal afted matched filtering. +** samples_num: Number of samples in the input table. +** rhh: The autocorrelation of the estimated channel +** impulse response. +** start_state: Number of the start point. In GSM each burst +** starts with sequence of three bits (0,0,0) which +** indicates start point of the algorithm. +** stop_states: Table with numbers of possible stop states. +** stops_num: Number of possible stop states +** +** +** OUTPUT: output: Differentially decoded hard output of the algorithm: +** -1 for logical "0" and 1 for logical "1" +** +** SUB_FUNC: none +** +** TEST(S): Tested with real world normal burst. +*/ + +#include <gnuradio/gr_complex.h> +#define BURST_SIZE 148 +#define PATHS_NUM 16 + +void viterbi_detector(const gr_complex * input, unsigned int samples_num, gr_complex * rhh, unsigned int start_state, const unsigned int * stop_states, unsigned int stops_num, float * output) +{ + float increment[8]; + float path_metrics1[16]; + float path_metrics2[16]; + float * new_path_metrics; + float * old_path_metrics; + float * tmp; + float trans_table[BURST_SIZE][16]; + float pm_candidate1, pm_candidate2; + bool real_imag; + float input_symbol_real, input_symbol_imag; + unsigned int i, sample_nr; + +/* +* Setup first path metrics, so only state pointed by start_state is possible. +* Start_state metric is equal to zero, the rest is written with some very low value, +* which makes them practically impossible to occur. +*/ + for(i=0; i<PATHS_NUM; i++){ + path_metrics1[i]=(-10e30); + } + path_metrics1[start_state]=0; + +/* +* Compute Increment - a table of values which does not change for subsequent input samples. +* Increment is table of reference levels for computation of branch metrics: +* branch metric = (+/-)received_sample (+/-) reference_level +*/ + increment[0] = -rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real(); + increment[1] = rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real(); + increment[2] = -rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real(); + increment[3] = rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real(); + increment[4] = -rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real(); + increment[5] = rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real(); + increment[6] = -rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real(); + increment[7] = rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real(); + + +/* +* Computation of path metrics and decisions (Add-Compare-Select). +* It's composed of two parts: one for odd input samples (imaginary numbers) +* and one for even samples (real numbers). +* Each part is composed of independent (parallelisable) statements like +* this one: +* pm_candidate1 = old_path_metrics[0] - input_symbol_real - increment[7]; +* pm_candidate2 = old_path_metrics[8] - input_symbol_real + increment[0]; +* if(pm_candidate1 > pm_candidate2){ +* new_path_metrics[0] = pm_candidate1; +* trans_table[sample_nr][0] = -1.0; +* } +* else{ +* new_path_metrics[0] = pm_candidate2; +* trans_table[sample_nr][0] = 1.0; +* } +* This is very good point for optimisations (SIMD or OpenMP) as it's most time +* consuming part of this function. +*/ + printf("# name: path_metrics_test_result\n# type: matrix\n# rows: 148\n# columns: 16\n"); + sample_nr=0; + old_path_metrics=path_metrics1; + new_path_metrics=path_metrics2; + while(sample_nr<samples_num){ + //Processing imag states + real_imag=1; + input_symbol_imag = input[sample_nr].imag(); + + pm_candidate1 = old_path_metrics[0] + input_symbol_imag - increment[2]; + pm_candidate2 = old_path_metrics[8] + input_symbol_imag + increment[5]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[0] = pm_candidate1; + trans_table[sample_nr][0] = -1.0; + } + else{ + new_path_metrics[0] = pm_candidate2; + trans_table[sample_nr][0] = 1.0; + } + + pm_candidate1 = old_path_metrics[0] - input_symbol_imag + increment[2]; + pm_candidate2 = old_path_metrics[8] - input_symbol_imag - increment[5]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[1] = pm_candidate1; + trans_table[sample_nr][1] = -1.0; + } + else{ + new_path_metrics[1] = pm_candidate2; + trans_table[sample_nr][1] = 1.0; + } + + pm_candidate1 = old_path_metrics[1] + input_symbol_imag - increment[3]; + pm_candidate2 = old_path_metrics[9] + input_symbol_imag + increment[4]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[2] = pm_candidate1; + trans_table[sample_nr][2] = -1.0; + } + else{ + new_path_metrics[2] = pm_candidate2; + trans_table[sample_nr][2] = 1.0; + } + + pm_candidate1 = old_path_metrics[1] - input_symbol_imag + increment[3]; + pm_candidate2 = old_path_metrics[9] - input_symbol_imag - increment[4]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[3] = pm_candidate1; + trans_table[sample_nr][3] = -1.0; + } + else{ + new_path_metrics[3] = pm_candidate2; + trans_table[sample_nr][3] = 1.0; + } + + pm_candidate1 = old_path_metrics[2] + input_symbol_imag - increment[0]; + pm_candidate2 = old_path_metrics[10] + input_symbol_imag + increment[7]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[4] = pm_candidate1; + trans_table[sample_nr][4] = -1.0; + } + else{ + new_path_metrics[4] = pm_candidate2; + trans_table[sample_nr][4] = 1.0; + } + + pm_candidate1 = old_path_metrics[2] - input_symbol_imag + increment[0]; + pm_candidate2 = old_path_metrics[10] - input_symbol_imag - increment[7]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[5] = pm_candidate1; + trans_table[sample_nr][5] = -1.0; + } + else{ + new_path_metrics[5] = pm_candidate2; + trans_table[sample_nr][5] = 1.0; + } + + pm_candidate1 = old_path_metrics[3] + input_symbol_imag - increment[1]; + pm_candidate2 = old_path_metrics[11] + input_symbol_imag + increment[6]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[6] = pm_candidate1; + trans_table[sample_nr][6] = -1.0; + } + else{ + new_path_metrics[6] = pm_candidate2; + trans_table[sample_nr][6] = 1.0; + } + + pm_candidate1 = old_path_metrics[3] - input_symbol_imag + increment[1]; + pm_candidate2 = old_path_metrics[11] - input_symbol_imag - increment[6]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[7] = pm_candidate1; + trans_table[sample_nr][7] = -1.0; + } + else{ + new_path_metrics[7] = pm_candidate2; + trans_table[sample_nr][7] = 1.0; + } + + pm_candidate1 = old_path_metrics[4] + input_symbol_imag - increment[6]; + pm_candidate2 = old_path_metrics[12] + input_symbol_imag + increment[1]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[8] = pm_candidate1; + trans_table[sample_nr][8] = -1.0; + } + else{ + new_path_metrics[8] = pm_candidate2; + trans_table[sample_nr][8] = 1.0; + } + + pm_candidate1 = old_path_metrics[4] - input_symbol_imag + increment[6]; + pm_candidate2 = old_path_metrics[12] - input_symbol_imag - increment[1]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[9] = pm_candidate1; + trans_table[sample_nr][9] = -1.0; + } + else{ + new_path_metrics[9] = pm_candidate2; + trans_table[sample_nr][9] = 1.0; + } + + pm_candidate1 = old_path_metrics[5] + input_symbol_imag - increment[7]; + pm_candidate2 = old_path_metrics[13] + input_symbol_imag + increment[0]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[10] = pm_candidate1; + trans_table[sample_nr][10] = -1.0; + } + else{ + new_path_metrics[10] = pm_candidate2; + trans_table[sample_nr][10] = 1.0; + } + + pm_candidate1 = old_path_metrics[5] - input_symbol_imag + increment[7]; + pm_candidate2 = old_path_metrics[13] - input_symbol_imag - increment[0]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[11] = pm_candidate1; + trans_table[sample_nr][11] = -1.0; + } + else{ + new_path_metrics[11] = pm_candidate2; + trans_table[sample_nr][11] = 1.0; + } + + pm_candidate1 = old_path_metrics[6] + input_symbol_imag - increment[4]; + pm_candidate2 = old_path_metrics[14] + input_symbol_imag + increment[3]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[12] = pm_candidate1; + trans_table[sample_nr][12] = -1.0; + } + else{ + new_path_metrics[12] = pm_candidate2; + trans_table[sample_nr][12] = 1.0; + } + + pm_candidate1 = old_path_metrics[6] - input_symbol_imag + increment[4]; + pm_candidate2 = old_path_metrics[14] - input_symbol_imag - increment[3]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[13] = pm_candidate1; + trans_table[sample_nr][13] = -1.0; + } + else{ + new_path_metrics[13] = pm_candidate2; + trans_table[sample_nr][13] = 1.0; + } + + pm_candidate1 = old_path_metrics[7] + input_symbol_imag - increment[5]; + pm_candidate2 = old_path_metrics[15] + input_symbol_imag + increment[2]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[14] = pm_candidate1; + trans_table[sample_nr][14] = -1.0; + } + else{ + new_path_metrics[14] = pm_candidate2; + trans_table[sample_nr][14] = 1.0; + } + + pm_candidate1 = old_path_metrics[7] - input_symbol_imag + increment[5]; + pm_candidate2 = old_path_metrics[15] - input_symbol_imag - increment[2]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[15] = pm_candidate1; + trans_table[sample_nr][15] = -1.0; + } + else{ + new_path_metrics[15] = pm_candidate2; + trans_table[sample_nr][15] = 1.0; + } + + for(i=0; i<16; i++){ + printf(" %0.6f", new_path_metrics[i]); + } + printf("\n"); + + tmp=old_path_metrics; + old_path_metrics=new_path_metrics; + new_path_metrics=tmp; + + sample_nr++; + if(sample_nr==samples_num) + break; + + //Processing real states + real_imag=0; + input_symbol_real = input[sample_nr].real(); + + pm_candidate1 = old_path_metrics[0] - input_symbol_real - increment[7]; + pm_candidate2 = old_path_metrics[8] - input_symbol_real + increment[0]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[0] = pm_candidate1; + trans_table[sample_nr][0] = -1.0; + } + else{ + new_path_metrics[0] = pm_candidate2; + trans_table[sample_nr][0] = 1.0; + } + + pm_candidate1 = old_path_metrics[0] + input_symbol_real + increment[7]; + pm_candidate2 = old_path_metrics[8] + input_symbol_real - increment[0]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[1] = pm_candidate1; + trans_table[sample_nr][1] = -1.0; + } + else{ + new_path_metrics[1] = pm_candidate2; + trans_table[sample_nr][1] = 1.0; + } + + pm_candidate1 = old_path_metrics[1] - input_symbol_real - increment[6]; + pm_candidate2 = old_path_metrics[9] - input_symbol_real + increment[1]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[2] = pm_candidate1; + trans_table[sample_nr][2] = -1.0; + } + else{ + new_path_metrics[2] = pm_candidate2; + trans_table[sample_nr][2] = 1.0; + } + + pm_candidate1 = old_path_metrics[1] + input_symbol_real + increment[6]; + pm_candidate2 = old_path_metrics[9] + input_symbol_real - increment[1]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[3] = pm_candidate1; + trans_table[sample_nr][3] = -1.0; + } + else{ + new_path_metrics[3] = pm_candidate2; + trans_table[sample_nr][3] = 1.0; + } + + pm_candidate1 = old_path_metrics[2] - input_symbol_real - increment[5]; + pm_candidate2 = old_path_metrics[10] - input_symbol_real + increment[2]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[4] = pm_candidate1; + trans_table[sample_nr][4] = -1.0; + } + else{ + new_path_metrics[4] = pm_candidate2; + trans_table[sample_nr][4] = 1.0; + } + + pm_candidate1 = old_path_metrics[2] + input_symbol_real + increment[5]; + pm_candidate2 = old_path_metrics[10] + input_symbol_real - increment[2]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[5] = pm_candidate1; + trans_table[sample_nr][5] = -1.0; + } + else{ + new_path_metrics[5] = pm_candidate2; + trans_table[sample_nr][5] = 1.0; + } + + pm_candidate1 = old_path_metrics[3] - input_symbol_real - increment[4]; + pm_candidate2 = old_path_metrics[11] - input_symbol_real + increment[3]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[6] = pm_candidate1; + trans_table[sample_nr][6] = -1.0; + } + else{ + new_path_metrics[6] = pm_candidate2; + trans_table[sample_nr][6] = 1.0; + } + + pm_candidate1 = old_path_metrics[3] + input_symbol_real + increment[4]; + pm_candidate2 = old_path_metrics[11] + input_symbol_real - increment[3]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[7] = pm_candidate1; + trans_table[sample_nr][7] = -1.0; + } + else{ + new_path_metrics[7] = pm_candidate2; + trans_table[sample_nr][7] = 1.0; + } + + pm_candidate1 = old_path_metrics[4] - input_symbol_real - increment[3]; + pm_candidate2 = old_path_metrics[12] - input_symbol_real + increment[4]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[8] = pm_candidate1; + trans_table[sample_nr][8] = -1.0; + } + else{ + new_path_metrics[8] = pm_candidate2; + trans_table[sample_nr][8] = 1.0; + } + + pm_candidate1 = old_path_metrics[4] + input_symbol_real + increment[3]; + pm_candidate2 = old_path_metrics[12] + input_symbol_real - increment[4]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[9] = pm_candidate1; + trans_table[sample_nr][9] = -1.0; + } + else{ + new_path_metrics[9] = pm_candidate2; + trans_table[sample_nr][9] = 1.0; + } + + pm_candidate1 = old_path_metrics[5] - input_symbol_real - increment[2]; + pm_candidate2 = old_path_metrics[13] - input_symbol_real + increment[5]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[10] = pm_candidate1; + trans_table[sample_nr][10] = -1.0; + } + else{ + new_path_metrics[10] = pm_candidate2; + trans_table[sample_nr][10] = 1.0; + } + + pm_candidate1 = old_path_metrics[5] + input_symbol_real + increment[2]; + pm_candidate2 = old_path_metrics[13] + input_symbol_real - increment[5]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[11] = pm_candidate1; + trans_table[sample_nr][11] = -1.0; + } + else{ + new_path_metrics[11] = pm_candidate2; + trans_table[sample_nr][11] = 1.0; + } + + pm_candidate1 = old_path_metrics[6] - input_symbol_real - increment[1]; + pm_candidate2 = old_path_metrics[14] - input_symbol_real + increment[6]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[12] = pm_candidate1; + trans_table[sample_nr][12] = -1.0; + } + else{ + new_path_metrics[12] = pm_candidate2; + trans_table[sample_nr][12] = 1.0; + } + + pm_candidate1 = old_path_metrics[6] + input_symbol_real + increment[1]; + pm_candidate2 = old_path_metrics[14] + input_symbol_real - increment[6]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[13] = pm_candidate1; + trans_table[sample_nr][13] = -1.0; + } + else{ + new_path_metrics[13] = pm_candidate2; + trans_table[sample_nr][13] = 1.0; + } + + pm_candidate1 = old_path_metrics[7] - input_symbol_real - increment[0]; + pm_candidate2 = old_path_metrics[15] - input_symbol_real + increment[7]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[14] = pm_candidate1; + trans_table[sample_nr][14] = -1.0; + } + else{ + new_path_metrics[14] = pm_candidate2; + trans_table[sample_nr][14] = 1.0; + } + + pm_candidate1 = old_path_metrics[7] + input_symbol_real + increment[0]; + pm_candidate2 = old_path_metrics[15] + input_symbol_real - increment[7]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[15] = pm_candidate1; + trans_table[sample_nr][15] = -1.0; + } + else{ + new_path_metrics[15] = pm_candidate2; + trans_table[sample_nr][15] = 1.0; + } + + for(i=0; i<16; i++){ + printf(" %0.6f", new_path_metrics[i]); + } + printf("\n"); + + tmp=old_path_metrics; + old_path_metrics=new_path_metrics; + new_path_metrics=tmp; + + sample_nr++; + } + +/* +* Find the best from the stop states by comparing their path metrics. +* Not every stop state is always possible, so we are searching in +* a subset of them. +*/ + unsigned int best_stop_state; + float stop_state_metric, max_stop_state_metric; + best_stop_state = stop_states[0]; + max_stop_state_metric = old_path_metrics[best_stop_state]; + for(i=1; i< stops_num; i++){ + stop_state_metric = old_path_metrics[stop_states[i]]; + if(stop_state_metric > max_stop_state_metric){ + max_stop_state_metric = stop_state_metric; + best_stop_state = stop_states[i]; + } + } + +/* +* This table was generated with hope that it gives a litle speedup during +* traceback stage. +* Received bit is related to the number of state in the trellis. +* I've numbered states so their parity (number of ones) is related +* to a received bit. +*/ + static const unsigned int parity_table[PATHS_NUM] = { 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, }; + +/* +* Table of previous states in the trellis diagram. +* For GMSK modulation every state has two previous states. +* Example: +* previous_state_nr1 = prev_table[current_state_nr][0] +* previous_state_nr2 = prev_table[current_state_nr][1] +*/ + static const unsigned int prev_table[PATHS_NUM][2] = { {0,8}, {0,8}, {1,9}, {1,9}, {2,10}, {2,10}, {3,11}, {3,11}, {4,12}, {4,12}, {5,13}, {5,13}, {6,14}, {6,14}, {7,15}, {7,15}, }; + +/* +* Traceback and differential decoding of received sequence. +* Decisions stored in trans_table are used to restore best path in the trellis. +*/ + sample_nr=samples_num; + unsigned int state_nr=best_stop_state; + unsigned int decision; + bool out_bit=0; + + while(sample_nr>0){ + sample_nr--; + decision = (trans_table[sample_nr][state_nr]>0); + + if(decision != out_bit) + output[sample_nr]=-trans_table[sample_nr][state_nr]; + else + output[sample_nr]=trans_table[sample_nr][state_nr]; + + out_bit = out_bit ^ real_imag ^ parity_table[state_nr]; + state_nr = prev_table[state_nr][decision]; + real_imag = !real_imag; + } +} +int main() +{ + gr_complex rhh[5]; + gr_complex input[BURST_SIZE]; + float output[BURST_SIZE]; + float path_metrics[16]; + unsigned int i; + + rhh[0] = gr_complex(6681134.2347451737,0.0000000000); + rhh[1] = gr_complex(4315167.0637422213,-860367.8252039659); + rhh[2] = gr_complex(935284.8973972955,-371780.5098627206); + rhh[3] = gr_complex(-51462.6871850645,50393.6755332753); + rhh[4] = gr_complex(-7439.8044847587,8028.1598971039); + input[0] = gr_complex(7977179.5758423340,-2764222.4174382309); + input[1] = gr_complex(6856794.8374158992,4865869.9717015224); + input[2] = gr_complex(9811374.7624817826,5183732.8837238941); + input[3] = gr_complex(6679440.9549223864,-4428971.3826953433); + input[4] = gr_complex(-4696701.8298753574,-5933567.0446173064); + input[5] = gr_complex(-6541783.9135319907,4653341.9806263465); + input[6] = gr_complex(2084689.1360897610,10178136.3338905703); + input[7] = gr_complex(6147479.6545689385,8874496.3001975510); + input[8] = gr_complex(5904918.0852984637,8800690.9255027324); + input[9] = gr_complex(6748883.3597641187,8777701.9989523701); + input[10] = gr_complex(6778221.8454960939,8045655.9501006966); + input[11] = gr_complex(6364128.8660152592,8022191.0277904849); + input[12] = gr_complex(8722069.2811547928,4776436.4937707158); + input[13] = gr_complex(10932320.6634155307,-1558217.3467115229); + input[14] = gr_complex(8712591.8296174519,-1858753.9812126879); + input[15] = gr_complex(2379782.5548789091,2932506.6217711852); + input[16] = gr_complex(-5444416.7791099474,5946987.8123247186); + input[17] = gr_complex(-5424576.3013667949,8041132.5497372206); + input[18] = gr_complex(4060723.5737396451,5559136.6484692302); + input[19] = gr_complex(9867910.7169802599,-1816506.5368241861); + input[20] = gr_complex(9116570.9774469398,-6509021.2122100489); + input[21] = gr_complex(5005755.5616738033,-8815847.5133575164); + input[22] = gr_complex(-2234914.8963576080,-10346435.2929649707); + input[23] = gr_complex(-7202255.9594532764,-9713796.9845253937); + input[24] = gr_complex(-9190470.4906416610,-4700539.2048025727); + input[25] = gr_complex(-10344677.5631833095,3164735.0763911339); + input[26] = gr_complex(-8144676.0358214928,3689244.8448072611); + input[27] = gr_complex(-2187512.8785404381,-2405086.8007661770); + input[28] = gr_complex(4192422.7355999672,-2302450.1948127761); + input[29] = gr_complex(7246362.6484694732,4298058.7434391864); + input[30] = gr_complex(6556902.8967612814,8229181.3319309540); + input[31] = gr_complex(6142925.0144970221,8026586.9547691522); + input[32] = gr_complex(8129663.3146255473,4033126.4267871310); + input[33] = gr_complex(5840297.4751724107,-4620492.6748427916); + input[34] = gr_complex(-1914675.1103647740,-10020347.7468968201); + input[35] = gr_complex(-2940115.4495635680,-8372239.2818623800); + input[36] = gr_complex(4008522.1739267618,-6826920.4027512996); + input[37] = gr_complex(8135500.9140075976,-7047328.2304275325); + input[38] = gr_complex(8405763.8657652065,-6931698.9773707138); + input[39] = gr_complex(8929684.6084167603,-6179537.9078161716); + input[40] = gr_complex(8180060.2347036134,-2186703.0895569432); + input[41] = gr_complex(3091335.4318671110,4054954.8339853790); + input[42] = gr_complex(-4295697.1578283813,7927174.1333465036); + input[43] = gr_complex(-8473978.8917866647,8708279.0942377765); + input[44] = gr_complex(-8307511.0194505267,8912587.7116757408); + input[45] = gr_complex(-3924398.3662469061,9788935.7640386801); + input[46] = gr_complex(3578818.1363314060,9475507.7755236719); + input[47] = gr_complex(7878887.0608754344,8305521.6216092538); + input[48] = gr_complex(7661073.4441334298,8193166.0088053150); + input[49] = gr_complex(7711201.6565008871,8476321.8633535057); + input[50] = gr_complex(8106392.3937723571,8574168.6601282097); + input[51] = gr_complex(4338938.6736003347,8161180.2535219444); + input[52] = gr_complex(-2892764.5596533259,7908598.1890047276); + input[53] = gr_complex(-7361426.2291188771,8354406.9966570400); + input[54] = gr_complex(-7399748.1998513071,9027400.1381105371); + input[55] = gr_complex(-2985443.1269021751,10343848.6311076693); + input[56] = gr_complex(4056164.2682814910,10098505.0940024592); + input[57] = gr_complex(3662304.4839048819,7612823.1212739553); + input[58] = gr_complex(-3973366.8165788800,7937078.9175711880); + input[59] = gr_complex(-4235798.1452934938,10334281.0868006106); + input[60] = gr_complex(3036808.0689534992,9898067.6488185041); + input[61] = gr_complex(7473543.5356334411,7807926.3775777007); + input[62] = gr_complex(9079322.0398128927,3406424.4956655651); + input[63] = gr_complex(9858644.6258316785,-3257437.0358347511); + input[64] = gr_complex(8880394.8906779401,-7679278.0091405679); + input[65] = gr_complex(3363837.0022190632,-9429173.7162515502); + input[66] = gr_complex(-5976744.0335793961,-5385450.6034509651); + input[67] = gr_complex(-9557981.0088688023,3050312.8082751348); + input[68] = gr_complex(-7022882.0701328497,3640309.4189949362); + input[69] = gr_complex(-6956342.7005542396,-3448204.4347535190); + input[70] = gr_complex(-7352343.4183843154,-7661573.7851171279); + input[71] = gr_complex(-2991151.1712345490,-7200411.9186981265); + input[72] = gr_complex(2885118.0445274930,-2984883.7704812000); + input[73] = gr_complex(7032828.1064425148,3581754.7941750460); + input[74] = gr_complex(10088763.7540586796,3662867.8467899580); + input[75] = gr_complex(10564181.4445688296,-3225930.1012457302); + input[76] = gr_complex(8350222.2591632884,-3732983.7871769890); + input[77] = gr_complex(7833973.7142023239,2987993.6910825032); + input[78] = gr_complex(9706408.6739433222,3052094.8092914429); + input[79] = gr_complex(9745006.6094854400,-3935102.0540104648); + input[80] = gr_complex(7816404.5637982106,-8252538.7267344501); + input[81] = gr_complex(2986277.6633892348,-9487975.5299777929); + input[82] = gr_complex(-5695845.6292771958,-5169515.8120368905); + input[83] = gr_complex(-10054151.1938444097,3411496.4582903101); + input[84] = gr_complex(-8051379.2657383084,2941255.2196879322); + input[85] = gr_complex(-3549464.5857489500,-3756761.7516137050); + input[86] = gr_complex(2758228.0974008231,-3356159.6927887732); + input[87] = gr_complex(3030904.7997136060,2423714.1793336859); + input[88] = gr_complex(-4312484.6648249906,6565622.5327912308); + input[89] = gr_complex(-8292628.1023570709,7907719.3416422373); + input[90] = gr_complex(-7526932.9695930025,8014555.7987554707); + input[91] = gr_complex(-7845877.0589824449,7739528.8884838661); + input[92] = gr_complex(-8621562.5281414296,7418568.3737750174); + input[93] = gr_complex(-8417158.0598517433,7181224.2163500283); + input[94] = gr_complex(-8512688.8578708004,7987622.6814399734); + input[95] = gr_complex(-4394195.2836061195,9949034.4722546078); + input[96] = gr_complex(5266129.2915991358,6195329.6856880505); + input[97] = gr_complex(10194253.6950446907,-2784736.7088111811); + input[98] = gr_complex(8824963.8092368357,-7786593.4880886609); + input[99] = gr_complex(3396738.8080786392,-9691138.5840958729); + input[100] = gr_complex(-5722550.5051566781,-5556953.7173151653); + input[101] = gr_complex(-5714701.2187169204,5472711.9084113399); + input[102] = gr_complex(3332017.2621497451,9704527.7971289307); + input[103] = gr_complex(7342514.5288135549,7753950.5122191338); + input[104] = gr_complex(6818048.9879954616,8189460.3032278512); + input[105] = gr_complex(3394201.9642735380,7945062.7654534997); + input[106] = gr_complex(-4167885.5119835120,6895554.1659005154); + input[107] = gr_complex(-8619065.5479442235,6801211.7162556173); + input[108] = gr_complex(-7427938.6338890027,2908143.9905314222); + input[109] = gr_complex(-6703266.9973377967,-4149571.8933691182); + input[110] = gr_complex(-7397979.4083190663,-8091927.8271739502); + input[111] = gr_complex(-8023643.3861837359,-8148580.2711619306); + input[112] = gr_complex(-9593984.7424030975,-3401373.7567658830); + input[113] = gr_complex(-9949905.4782167133,3693487.8505923129); + input[114] = gr_complex(-7643884.0559280366,3256209.4725131588); + input[115] = gr_complex(-2697566.6721224338,-3206105.0871117339); + input[116] = gr_complex(3377896.5469162161,-3637995.9373872238); + input[117] = gr_complex(7053276.0410971297,2764169.1462154472); + input[118] = gr_complex(8628643.1609179415,3396969.9720182270); + input[119] = gr_complex(8591483.6933623832,-3571890.2316942490); + input[120] = gr_complex(7631932.3620410990,-7892583.3345261374); + input[121] = gr_complex(3523270.0499849520,-9235294.6299457569); + input[122] = gr_complex(-5210049.1886767643,-5470018.0261554671); + input[123] = gr_complex(-5729032.9836538611,4597120.7055899110); + input[124] = gr_complex(4722045.6474561440,5593554.0462966477); + input[125] = gr_complex(9943005.2302960120,-3058974.8321727011); + input[126] = gr_complex(7338276.2722858489,-3095524.7280114950); + input[127] = gr_complex(6924101.7894357592,4679671.4725222811); + input[128] = gr_complex(9394305.4008450378,4311128.9848157102); + input[129] = gr_complex(9835558.7182324342,-3667900.0077023208); + input[130] = gr_complex(8223108.7120001484,-8579057.2975662407); + input[131] = gr_complex(2845955.6588687100,-9157587.9910129588); + input[132] = gr_complex(-5965686.3459505001,-4635464.3736052224); + input[133] = gr_complex(-9515672.9792508632,3206974.9185256958); + input[134] = gr_complex(-8344649.1418864401,7073463.4248667136); + input[135] = gr_complex(-8254731.1990081621,7048210.7404652704); + input[136] = gr_complex(-7504645.1065991390,3469527.9779098351); + input[137] = gr_complex(-6905884.6544481078,-4071500.7763075172); + input[138] = gr_complex(-7265828.0211983416,-8724546.7090917714); + input[139] = gr_complex(-3159001.5446096850,-7599002.0958460663); + input[140] = gr_complex(4820872.7249604221,-7688968.4836491412); + input[141] = gr_complex(4538964.4842799734,-10655536.8874594998); + input[142] = gr_complex(-4627802.4763165191,-6342339.7226147177); + input[143] = gr_complex(-5229789.9845531741,4793436.5098953182); + input[144] = gr_complex(3023641.9008085518,9426626.5553139690); + input[145] = gr_complex(3151170.4858403988,7510483.1565964483); + input[146] = gr_complex(-3112381.9596595298,6480539.7998312227); + input[147] = gr_complex(-3526072.3028905988,4305425.6301188134); + unsigned int stop_states[1] = { 4, }; + + viterbi_detector(input, BURST_SIZE, rhh, 3, stop_states, 1, output); + printf("# name: output\n# type: matrix\n# rows: 1\n# columns: 148\n"); + for(i=0; i<BURST_SIZE ; i++){ + printf(" %d\n", output[i]>0); + } + printf("\n"); + +} diff --git a/viterbi-detector/viterbi_detector_lh4.cpp b/viterbi-detector/viterbi_detector_lh4.cpp new file mode 100644 index 0000000..45da39d --- /dev/null +++ b/viterbi-detector/viterbi_detector_lh4.cpp @@ -0,0 +1,552 @@ +/*************************************************************************** + * Copyright (C) 2008 by Piotr Krysik * + * pkrysik@stud.pw.edu.pl * + * * + * This program is free software; you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation; either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program; if not, write to the * + * Free Software Foundation, Inc., * + * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * + ***************************************************************************/ + +/* +** viterbi_detector: +** This part does the detection of received sequnece. +** Employed algorithm is viterbi Maximum Likehood Sequence Estimation. +** At this moment it gives hard decisions on the output, but +** it was designed with soft decisions in mind. +** +** SYNTAX: void viterbi_detector( +** const gr_complex * input, +** unsigned int samples_num, +** gr_complex * rhh, +** unsigned int start_state, +** const unsigned int * stop_states, +** unsigned int stops_num, +** float * output) +** +** INPUT: input: Complex received signal afted matched filtering. +** samples_num: Number of samples in the input table. +** rhh: The autocorrelation of the estimated channel +** impulse response. +** start_state: Number of the start point. In GSM each burst +** starts with sequence of three bits (0,0,0) which +** indicates start point of the algorithm. +** stop_states: Table with numbers of possible stop states. +** stops_num: Number of possible stop states +** +** +** OUTPUT: output: Differentially decoded hard output of the algorithm: +** -1 for logical "0" and 1 for logical "1" +** +** SUB_FUNC: none +** +** TEST(S): Tested with real world normal burst. +*/ + +#include <gnuradio/gr_complex.h> +#define BURST_SIZE 148 +#define PATHS_NUM 16 + +void viterbi_detector(const gr_complex * input, unsigned int samples_num, gr_complex * rhh, unsigned int start_state, const unsigned int * stop_states, unsigned int stops_num, float * output) +{ + float increment[8]; + float path_metrics1[16]; + float path_metrics2[16]; + float * new_path_metrics; + float * old_path_metrics; + float * tmp; + float trans_table[BURST_SIZE][16]; + float pm_candidate1, pm_candidate2; + bool real_imag; + float input_symbol_real, input_symbol_imag; + unsigned int i, sample_nr; + +/* +* Setup first path metrics, so only state pointed by start_state is possible. +* Start_state metric is equal to zero, the rest is written with some very low value, +* which makes them practically impossible to occur. +*/ + for(i=0; i<PATHS_NUM; i++){ + path_metrics1[i]=(-10e30); + } + path_metrics1[start_state]=0; + +/* +* Compute Increment - a table of values which does not change for subsequent input samples. +* Increment is table of reference levels for computation of branch metrics: +* branch metric = (+/-)received_sample (+/-) reference_level +*/ + increment[0] = -rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real(); + increment[1] = rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real(); + increment[2] = -rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real(); + increment[3] = rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real(); + increment[4] = -rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real(); + increment[5] = rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real(); + increment[6] = -rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real(); + increment[7] = rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real(); + + +/* +* Computation of path metrics and decisions (Add-Compare-Select). +* It's composed of two parts: one for odd input samples (imaginary numbers) +* and one for even samples (real numbers). +* Each part is composed of independent (parallelisable) statements like +* this one: +* pm_candidate1 = old_path_metrics[0] - input_symbol_real - increment[7]; +* pm_candidate2 = old_path_metrics[8] - input_symbol_real + increment[0]; +* if(pm_candidate1 > pm_candidate2){ +* new_path_metrics[0] = pm_candidate1; +* trans_table[sample_nr][0] = -1.0; +* } +* else{ +* new_path_metrics[0] = pm_candidate2; +* trans_table[sample_nr][0] = 1.0; +* } +* This is very good point for optimisations (SIMD or OpenMP) as it's most time +* consuming part of this function. +*/ + sample_nr=0; + old_path_metrics=path_metrics1; + new_path_metrics=path_metrics2; + while(sample_nr<samples_num){ + //Processing imag states + real_imag=1; + input_symbol_imag = input[sample_nr].imag(); + + pm_candidate1 = old_path_metrics[0] + input_symbol_imag - increment[2]; + pm_candidate2 = old_path_metrics[8] + input_symbol_imag + increment[5]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[0] = pm_candidate1; + trans_table[sample_nr][0] = -1.0; + } + else{ + new_path_metrics[0] = pm_candidate2; + trans_table[sample_nr][0] = 1.0; + } + + pm_candidate1 = old_path_metrics[0] - input_symbol_imag + increment[2]; + pm_candidate2 = old_path_metrics[8] - input_symbol_imag - increment[5]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[1] = pm_candidate1; + trans_table[sample_nr][1] = -1.0; + } + else{ + new_path_metrics[1] = pm_candidate2; + trans_table[sample_nr][1] = 1.0; + } + + pm_candidate1 = old_path_metrics[1] + input_symbol_imag - increment[3]; + pm_candidate2 = old_path_metrics[9] + input_symbol_imag + increment[4]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[2] = pm_candidate1; + trans_table[sample_nr][2] = -1.0; + } + else{ + new_path_metrics[2] = pm_candidate2; + trans_table[sample_nr][2] = 1.0; + } + + pm_candidate1 = old_path_metrics[1] - input_symbol_imag + increment[3]; + pm_candidate2 = old_path_metrics[9] - input_symbol_imag - increment[4]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[3] = pm_candidate1; + trans_table[sample_nr][3] = -1.0; + } + else{ + new_path_metrics[3] = pm_candidate2; + trans_table[sample_nr][3] = 1.0; + } + + pm_candidate1 = old_path_metrics[2] + input_symbol_imag - increment[0]; + pm_candidate2 = old_path_metrics[10] + input_symbol_imag + increment[7]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[4] = pm_candidate1; + trans_table[sample_nr][4] = -1.0; + } + else{ + new_path_metrics[4] = pm_candidate2; + trans_table[sample_nr][4] = 1.0; + } + + pm_candidate1 = old_path_metrics[2] - input_symbol_imag + increment[0]; + pm_candidate2 = old_path_metrics[10] - input_symbol_imag - increment[7]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[5] = pm_candidate1; + trans_table[sample_nr][5] = -1.0; + } + else{ + new_path_metrics[5] = pm_candidate2; + trans_table[sample_nr][5] = 1.0; + } + + pm_candidate1 = old_path_metrics[3] + input_symbol_imag - increment[1]; + pm_candidate2 = old_path_metrics[11] + input_symbol_imag + increment[6]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[6] = pm_candidate1; + trans_table[sample_nr][6] = -1.0; + } + else{ + new_path_metrics[6] = pm_candidate2; + trans_table[sample_nr][6] = 1.0; + } + + pm_candidate1 = old_path_metrics[3] - input_symbol_imag + increment[1]; + pm_candidate2 = old_path_metrics[11] - input_symbol_imag - increment[6]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[7] = pm_candidate1; + trans_table[sample_nr][7] = -1.0; + } + else{ + new_path_metrics[7] = pm_candidate2; + trans_table[sample_nr][7] = 1.0; + } + + pm_candidate1 = old_path_metrics[4] + input_symbol_imag - increment[6]; + pm_candidate2 = old_path_metrics[12] + input_symbol_imag + increment[1]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[8] = pm_candidate1; + trans_table[sample_nr][8] = -1.0; + } + else{ + new_path_metrics[8] = pm_candidate2; + trans_table[sample_nr][8] = 1.0; + } + + pm_candidate1 = old_path_metrics[4] - input_symbol_imag + increment[6]; + pm_candidate2 = old_path_metrics[12] - input_symbol_imag - increment[1]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[9] = pm_candidate1; + trans_table[sample_nr][9] = -1.0; + } + else{ + new_path_metrics[9] = pm_candidate2; + trans_table[sample_nr][9] = 1.0; + } + + pm_candidate1 = old_path_metrics[5] + input_symbol_imag - increment[7]; + pm_candidate2 = old_path_metrics[13] + input_symbol_imag + increment[0]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[10] = pm_candidate1; + trans_table[sample_nr][10] = -1.0; + } + else{ + new_path_metrics[10] = pm_candidate2; + trans_table[sample_nr][10] = 1.0; + } + + pm_candidate1 = old_path_metrics[5] - input_symbol_imag + increment[7]; + pm_candidate2 = old_path_metrics[13] - input_symbol_imag - increment[0]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[11] = pm_candidate1; + trans_table[sample_nr][11] = -1.0; + } + else{ + new_path_metrics[11] = pm_candidate2; + trans_table[sample_nr][11] = 1.0; + } + + pm_candidate1 = old_path_metrics[6] + input_symbol_imag - increment[4]; + pm_candidate2 = old_path_metrics[14] + input_symbol_imag + increment[3]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[12] = pm_candidate1; + trans_table[sample_nr][12] = -1.0; + } + else{ + new_path_metrics[12] = pm_candidate2; + trans_table[sample_nr][12] = 1.0; + } + + pm_candidate1 = old_path_metrics[6] - input_symbol_imag + increment[4]; + pm_candidate2 = old_path_metrics[14] - input_symbol_imag - increment[3]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[13] = pm_candidate1; + trans_table[sample_nr][13] = -1.0; + } + else{ + new_path_metrics[13] = pm_candidate2; + trans_table[sample_nr][13] = 1.0; + } + + pm_candidate1 = old_path_metrics[7] + input_symbol_imag - increment[5]; + pm_candidate2 = old_path_metrics[15] + input_symbol_imag + increment[2]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[14] = pm_candidate1; + trans_table[sample_nr][14] = -1.0; + } + else{ + new_path_metrics[14] = pm_candidate2; + trans_table[sample_nr][14] = 1.0; + } + + pm_candidate1 = old_path_metrics[7] - input_symbol_imag + increment[5]; + pm_candidate2 = old_path_metrics[15] - input_symbol_imag - increment[2]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[15] = pm_candidate1; + trans_table[sample_nr][15] = -1.0; + } + else{ + new_path_metrics[15] = pm_candidate2; + trans_table[sample_nr][15] = 1.0; + } + tmp=old_path_metrics; + old_path_metrics=new_path_metrics; + new_path_metrics=tmp; + + sample_nr++; + if(sample_nr==samples_num) + break; + + //Processing real states + real_imag=0; + input_symbol_real = input[sample_nr].real(); + + pm_candidate1 = old_path_metrics[0] - input_symbol_real - increment[7]; + pm_candidate2 = old_path_metrics[8] - input_symbol_real + increment[0]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[0] = pm_candidate1; + trans_table[sample_nr][0] = -1.0; + } + else{ + new_path_metrics[0] = pm_candidate2; + trans_table[sample_nr][0] = 1.0; + } + + pm_candidate1 = old_path_metrics[0] + input_symbol_real + increment[7]; + pm_candidate2 = old_path_metrics[8] + input_symbol_real - increment[0]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[1] = pm_candidate1; + trans_table[sample_nr][1] = -1.0; + } + else{ + new_path_metrics[1] = pm_candidate2; + trans_table[sample_nr][1] = 1.0; + } + + pm_candidate1 = old_path_metrics[1] - input_symbol_real - increment[6]; + pm_candidate2 = old_path_metrics[9] - input_symbol_real + increment[1]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[2] = pm_candidate1; + trans_table[sample_nr][2] = -1.0; + } + else{ + new_path_metrics[2] = pm_candidate2; + trans_table[sample_nr][2] = 1.0; + } + + pm_candidate1 = old_path_metrics[1] + input_symbol_real + increment[6]; + pm_candidate2 = old_path_metrics[9] + input_symbol_real - increment[1]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[3] = pm_candidate1; + trans_table[sample_nr][3] = -1.0; + } + else{ + new_path_metrics[3] = pm_candidate2; + trans_table[sample_nr][3] = 1.0; + } + + pm_candidate1 = old_path_metrics[2] - input_symbol_real - increment[5]; + pm_candidate2 = old_path_metrics[10] - input_symbol_real + increment[2]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[4] = pm_candidate1; + trans_table[sample_nr][4] = -1.0; + } + else{ + new_path_metrics[4] = pm_candidate2; + trans_table[sample_nr][4] = 1.0; + } + + pm_candidate1 = old_path_metrics[2] + input_symbol_real + increment[5]; + pm_candidate2 = old_path_metrics[10] + input_symbol_real - increment[2]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[5] = pm_candidate1; + trans_table[sample_nr][5] = -1.0; + } + else{ + new_path_metrics[5] = pm_candidate2; + trans_table[sample_nr][5] = 1.0; + } + + pm_candidate1 = old_path_metrics[3] - input_symbol_real - increment[4]; + pm_candidate2 = old_path_metrics[11] - input_symbol_real + increment[3]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[6] = pm_candidate1; + trans_table[sample_nr][6] = -1.0; + } + else{ + new_path_metrics[6] = pm_candidate2; + trans_table[sample_nr][6] = 1.0; + } + + pm_candidate1 = old_path_metrics[3] + input_symbol_real + increment[4]; + pm_candidate2 = old_path_metrics[11] + input_symbol_real - increment[3]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[7] = pm_candidate1; + trans_table[sample_nr][7] = -1.0; + } + else{ + new_path_metrics[7] = pm_candidate2; + trans_table[sample_nr][7] = 1.0; + } + + pm_candidate1 = old_path_metrics[4] - input_symbol_real - increment[3]; + pm_candidate2 = old_path_metrics[12] - input_symbol_real + increment[4]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[8] = pm_candidate1; + trans_table[sample_nr][8] = -1.0; + } + else{ + new_path_metrics[8] = pm_candidate2; + trans_table[sample_nr][8] = 1.0; + } + + pm_candidate1 = old_path_metrics[4] + input_symbol_real + increment[3]; + pm_candidate2 = old_path_metrics[12] + input_symbol_real - increment[4]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[9] = pm_candidate1; + trans_table[sample_nr][9] = -1.0; + } + else{ + new_path_metrics[9] = pm_candidate2; + trans_table[sample_nr][9] = 1.0; + } + + pm_candidate1 = old_path_metrics[5] - input_symbol_real - increment[2]; + pm_candidate2 = old_path_metrics[13] - input_symbol_real + increment[5]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[10] = pm_candidate1; + trans_table[sample_nr][10] = -1.0; + } + else{ + new_path_metrics[10] = pm_candidate2; + trans_table[sample_nr][10] = 1.0; + } + + pm_candidate1 = old_path_metrics[5] + input_symbol_real + increment[2]; + pm_candidate2 = old_path_metrics[13] + input_symbol_real - increment[5]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[11] = pm_candidate1; + trans_table[sample_nr][11] = -1.0; + } + else{ + new_path_metrics[11] = pm_candidate2; + trans_table[sample_nr][11] = 1.0; + } + + pm_candidate1 = old_path_metrics[6] - input_symbol_real - increment[1]; + pm_candidate2 = old_path_metrics[14] - input_symbol_real + increment[6]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[12] = pm_candidate1; + trans_table[sample_nr][12] = -1.0; + } + else{ + new_path_metrics[12] = pm_candidate2; + trans_table[sample_nr][12] = 1.0; + } + + pm_candidate1 = old_path_metrics[6] + input_symbol_real + increment[1]; + pm_candidate2 = old_path_metrics[14] + input_symbol_real - increment[6]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[13] = pm_candidate1; + trans_table[sample_nr][13] = -1.0; + } + else{ + new_path_metrics[13] = pm_candidate2; + trans_table[sample_nr][13] = 1.0; + } + + pm_candidate1 = old_path_metrics[7] - input_symbol_real - increment[0]; + pm_candidate2 = old_path_metrics[15] - input_symbol_real + increment[7]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[14] = pm_candidate1; + trans_table[sample_nr][14] = -1.0; + } + else{ + new_path_metrics[14] = pm_candidate2; + trans_table[sample_nr][14] = 1.0; + } + + pm_candidate1 = old_path_metrics[7] + input_symbol_real + increment[0]; + pm_candidate2 = old_path_metrics[15] + input_symbol_real - increment[7]; + if(pm_candidate1 > pm_candidate2){ + new_path_metrics[15] = pm_candidate1; + trans_table[sample_nr][15] = -1.0; + } + else{ + new_path_metrics[15] = pm_candidate2; + trans_table[sample_nr][15] = 1.0; + } + tmp=old_path_metrics; + old_path_metrics=new_path_metrics; + new_path_metrics=tmp; + + sample_nr++; + } + +/* +* Find the best from the stop states by comparing their path metrics. +* Not every stop state is always possible, so we are searching in +* a subset of them. +*/ + unsigned int best_stop_state; + float stop_state_metric, max_stop_state_metric; + best_stop_state = stop_states[0]; + max_stop_state_metric = old_path_metrics[best_stop_state]; + for(i=1; i< stops_num; i++){ + stop_state_metric = old_path_metrics[stop_states[i]]; + if(stop_state_metric > max_stop_state_metric){ + max_stop_state_metric = stop_state_metric; + best_stop_state = stop_states[i]; + } + } + +/* +* This table was generated with hope that it gives a litle speedup during +* traceback stage. +* Received bit is related to the number of state in the trellis. +* I've numbered states so their parity (number of ones) is related +* to a received bit. +*/ + static const unsigned int parity_table[PATHS_NUM] = { 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, }; + +/* +* Table of previous states in the trellis diagram. +* For GMSK modulation every state has two previous states. +* Example: +* previous_state_nr1 = prev_table[current_state_nr][0] +* previous_state_nr2 = prev_table[current_state_nr][1] +*/ + static const unsigned int prev_table[PATHS_NUM][2] = { {0,8}, {0,8}, {1,9}, {1,9}, {2,10}, {2,10}, {3,11}, {3,11}, {4,12}, {4,12}, {5,13}, {5,13}, {6,14}, {6,14}, {7,15}, {7,15}, }; + +/* +* Traceback and differential decoding of received sequence. +* Decisions stored in trans_table are used to restore best path in the trellis. +*/ + sample_nr=samples_num; + unsigned int state_nr=best_stop_state; + unsigned int decision; + bool out_bit=0; + + while(sample_nr>0){ + sample_nr--; + decision = (trans_table[sample_nr][state_nr]>0); + + if(decision != out_bit) + output[sample_nr]=-trans_table[sample_nr][state_nr]; + else + output[sample_nr]=trans_table[sample_nr][state_nr]; + + out_bit = out_bit ^ real_imag ^ parity_table[state_nr]; + state_nr = prev_table[state_nr][decision]; + real_imag = !real_imag; + } +} |