diff options
-rw-r--r-- | src/lib/gsm_receiver_cf.cc | 322 |
1 files changed, 163 insertions, 159 deletions
diff --git a/src/lib/gsm_receiver_cf.cc b/src/lib/gsm_receiver_cf.cc index 827c600..e624450 100644 --- a/src/lib/gsm_receiver_cf.cc +++ b/src/lib/gsm_receiver_cf.cc @@ -1,21 +1,21 @@ /* -*- c++ -*- */ /* - * Copyright 2004 Free Software Foundation, Inc. + * @file + * @author Piotr Krysik <pkrysik@stud.elka.pw.edu.pl> + * @section LICENSE * - * This file is part of GNU Radio - * - * GNU Radio is free software; you can redistribute it and/or modify + * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * - * GNU Radio is distributed in the hope that it will be useful, + * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Radio; see the file COPYING. If not, write to + * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ @@ -39,7 +39,7 @@ #define SYNC_SEARCH_RANGE 30 #define TRAIN_SEARCH_RANGE 40 -//tutaj umieściłem funkcję która dostaje normalny pakiet + numer +//tutaj umieściłem funkcję która dostaje normalny pakiet + numer //numer pakietu to numer ramki + numer szczeliny czasowej //w tym przykładzie po prostu wyrzuca zawartość pakietu na wyjście //ps. pakiety które nie mają trzech zer na początku zazwyczaj są błędnie odebrane @@ -113,8 +113,8 @@ gsm_receiver_cf::gsm_receiver_cf(gr_feval_dd *tuner, int osr) d_OSR(osr), d_chan_imp_length(CHAN_IMP_RESP_LENGTH), d_tuner(tuner), - d_samples_counter(0), -// d_fcch_start_pos(0), + d_counter(0), + d_fcch_start_pos(0), d_freq_offset(0), d_burst_nr(osr), d_state(first_fcch_search) @@ -134,74 +134,76 @@ gsm_receiver_cf::~gsm_receiver_cf() { } -void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &ninput_items_required) +void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &nitems_items_required) { - ninput_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR); + nitems_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR); } int gsm_receiver_cf::general_work(int noutput_items, - gr_vector_int &ninput_items, + gr_vector_int &nitems_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { - const gr_complex *in = (const gr_complex *) input_items[0]; + const gr_complex *input = (const gr_complex *) input_items[0]; float *out = (float *) output_items[0]; - int produced_out = 0; - float prev_freq_offset; + int produced_out = 0; //how many output elements were produced - this isn't used yet + //probably the gsm receiver will be changed into sink so this variable won't be necessary switch (d_state) { - //bootstrapping + //bootstrapping case first_fcch_search: - if (find_fcch_burst(in, ninput_items[0])) { - set_frequency(d_freq_offset); - produced_out = 0; + if (find_fcch_burst(input, nitems_items[0])) { //find frequency correction burst in the input buffer + set_frequency(d_freq_offset); //if fcch search is successful set frequency offset + //produced_out = 0; d_state = next_fcch_search; } else { - produced_out = 0; + //produced_out = 0; d_state = first_fcch_search; } break; - case next_fcch_search: - prev_freq_offset = d_freq_offset; - if (find_fcch_burst(in, ninput_items[0])) { - if (abs(d_freq_offset) > 100.0) { - set_frequency(d_freq_offset); + case next_fcch_search: { //this state is used because it takes a bunch of buffered samples + //before previous set_frequqency cause change + float prev_freq_offset = d_freq_offset; + if (find_fcch_burst(input, nitems_items[0])) { + if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET) { + set_frequency(d_freq_offset); //call set_frequncy only frequency offset change is greater than some value } - d_samples_counter = 0; - produced_out = 0; + //produced_out = 0; d_state = sch_search; } else { - produced_out = 0; + //produced_out = 0; d_state = next_fcch_search; } break; - + } case sch_search: { - gr_complex chan_imp_resp[CHAN_IMP_RESP_LENGTH*d_OSR]; + vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR); int t1, t2, t3; int burst_start = 0; unsigned char output_binary[BURST_SIZE]; - if (find_sch_burst(in, ninput_items[0], out)) { - burst_start = get_sch_chan_imp_resp(in, chan_imp_resp); - detect_burst(in, chan_imp_resp, burst_start, output_binary); - if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { + if (find_sch_burst(nitems_items[0])) { //wait for a SCH burst + burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it + detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection + if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { //decode SCH burst DCOUT("sch burst_start: " << burst_start); - d_burst_nr.set(t1, t2, t3, 0); - DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3); - d_channel_conf.set_multiframe_type(TSC0, multiframe_51); - konfiguruj_odbiornik();//!! - d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst); - d_channel_conf.set_burst_types(TSC0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst); - d_channel_conf.set_burst_types(TSC0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst); + DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3); + d_burst_nr.set(t1, t2, t3, 0); //set counter of bursts value + + //configure the receiver - tell him where to find which burst type + d_channel_conf.set_multiframe_type(TSC0, multiframe_51); //in the timeslot nr.0 (TSC0) bursts changes according to t3 counter + konfiguruj_odbiornik();//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready + d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst); //tell where to find fcch bursts + d_channel_conf.set_burst_types(TSC0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst); //sch bursts + d_channel_conf.set_burst_types(TSC0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst);//!and maybe normal bursts of the BCCH logical channel d_burst_nr++; - consume_each(burst_start + BURST_SIZE * d_OSR); + consume_each(burst_start + BURST_SIZE * d_OSR); //consume samples up to next guard period d_state = synchronized; } else { - d_state = next_fcch_search; + d_state = next_fcch_search; //if there is error in the sch burst go back to fcch search phase } } else { d_state = sch_search; @@ -211,38 +213,32 @@ gsm_receiver_cf::general_work(int noutput_items, //in this state receiver is synchronized and it processes bursts according to burst type for given burst number case synchronized: { - gr_complex chan_imp_resp[d_chan_imp_length*d_OSR]; - burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); + vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR); int burst_start; int offset = 0; int to_consume = 0; unsigned char output_binary[BURST_SIZE]; + burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number + switch (b_type) { case fcch_burst: { - int ii; - int first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1; - int last_sample = first_sample + USEFUL_BITS * d_OSR; - double phase_sum = 0; - for (ii = first_sample; ii < last_sample; ii++) { - double phase_diff = compute_phase_diff(in[ii], in[ii-1]) - (M_PI / 2) / d_OSR; - phase_sum += phase_diff; - } - double freq_offset = compute_freq_offset(phase_sum, last_sample - first_sample); + const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1; + const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR; + double freq_offset = compute_freq_offset(input, first_sample, last_sample); if (abs(freq_offset) > FCCH_MAX_FREQ_OFFSET) { d_freq_offset -= freq_offset; set_frequency(d_freq_offset); - DCOUT("adjusting frequency, new frequency offset: " << d_freq_offset << "\n"); + DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n"); } } break; - - case sch_burst: { + case sch_burst: { int t1, t2, t3, d_ncc, d_bcc; - burst_start = get_sch_chan_imp_resp(in, chan_imp_resp); - detect_burst(in, &d_channel_imp_resp[0], burst_start, output_binary); + burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); + detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { -// d_burst_nr.set(t1, t2, t3, 0); + // d_burst_nr.set(t1, t2, t3, 0); DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3); offset = burst_start - floor((GUARD_PERIOD) * d_OSR); DCOUT(offset); @@ -251,10 +247,10 @@ gsm_receiver_cf::general_work(int noutput_items, } break; - case normal_burst: - burst_start = get_norm_chan_imp_resp(in, chan_imp_resp, TRAIN_SEARCH_RANGE, d_bcc); - detect_burst(in, &d_channel_imp_resp[0], burst_start, output_binary); - przetwarzaj_normalny_pakiet(d_burst_nr, output_binary); + case normal_burst: //? + burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TRAIN_SEARCH_RANGE, d_bcc); + detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); + przetwarzaj_normalny_pakiet(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready break; case rach_burst: @@ -264,18 +260,17 @@ gsm_receiver_cf::general_work(int noutput_items, //to C0 (where sch is) back and forth break; - case dummy: - burst_start = get_norm_chan_imp_resp(in, chan_imp_resp, TRAIN_SEARCH_RANGE, 8); - detect_burst(in, &d_channel_imp_resp[0], burst_start, output_binary); + case dummy: //? + burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TRAIN_SEARCH_RANGE, 8); + detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); break; case empty: break; } - d_burst_nr++; - + d_burst_nr++; //? - to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset(); + to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset(); //? consume_each(to_consume); } break; @@ -284,29 +279,28 @@ gsm_receiver_cf::general_work(int noutput_items, return produced_out; } -bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems) +bool gsm_receiver_cf::find_fcch_burst(const gr_complex *input, const int nitems) { circular_buffer_float phase_diff_buffer(FCCH_BUFFER_SIZE * d_OSR); float phase_diff = 0; gr_complex conjprod; + int start_pos = -1; int hit_count = 0; int miss_count = 0; - int start_pos = -1; float min_phase_diff; float max_phase_diff; double best_sum = 0; float lowest_max_min_diff = 99999; - int to_consume = 0; int sample_number = 0; bool end = false; bool result = false; - double freq_offset; circular_buffer_float::iterator buffer_iter; + //? enum states { - init, search, found_something, fcch_found, search_fail + init, search, found_something, fcch_found, search_fail //? } fcch_search_state; fcch_search_state = init; @@ -331,7 +325,7 @@ bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems) to_consume = sample_number; fcch_search_state = search_fail; } else { - phase_diff = compute_phase_diff(in[sample_number], in[sample_number-1]); + phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]); if (phase_diff > 0) { to_consume = sample_number; @@ -343,65 +337,69 @@ bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems) break; - case found_something: - if (phase_diff > 0) { - hit_count++; - } else { - miss_count++; - } + case found_something: { - if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) { - fcch_search_state = init; - continue; - } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) { - fcch_search_state = fcch_found; - continue; - } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) { - //find difference between minimal and maximal element in the buffer - //for FCCH this value should be low - //this part is searching for a region where this value is lowest - min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); - max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); - - if (lowest_max_min_diff > max_phase_diff - min_phase_diff) { - lowest_max_min_diff = max_phase_diff - min_phase_diff; - start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; - best_sum = 0; - - for (buffer_iter = phase_diff_buffer.begin(); - buffer_iter != (phase_diff_buffer.end()); - buffer_iter++) { - best_sum += *buffer_iter - (M_PI / 2) / d_OSR; - } + if (phase_diff > 0) { + hit_count++; + } else { + miss_count++; } - } - sample_number++; + if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) { + fcch_search_state = init; + continue; + } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) { + fcch_search_state = fcch_found; + continue; + } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) { + //find difference between minimal and maximal element in the buffer + //for FCCH this value should be low + //this part is searching for a region where this value is lowest + min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); + max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); + + if (lowest_max_min_diff > max_phase_diff - min_phase_diff) { + lowest_max_min_diff = max_phase_diff - min_phase_diff; + start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; + best_sum = 0; + + for (buffer_iter = phase_diff_buffer.begin(); + buffer_iter != (phase_diff_buffer.end()); + buffer_iter++) { + best_sum += *buffer_iter - (M_PI / 2) / d_OSR; + } + } + } - if (sample_number >= nitems) { - fcch_search_state = search_fail; - continue; - } + sample_number++; - phase_diff = compute_phase_diff(in[sample_number], in[sample_number-1]); - phase_diff_buffer.push_back(phase_diff); - fcch_search_state = found_something; + if (sample_number >= nitems) { + fcch_search_state = search_fail; + continue; + } + phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]); + phase_diff_buffer.push_back(phase_diff); + fcch_search_state = found_something; + } break; - case fcch_found: -// DCOUT("fcch found on position: " << d_samples_counter + start_pos); - DCOUT("fcch found on position: " << start_pos); - to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; + case fcch_found: { + DCOUT("fcch found on position: " << d_counter + start_pos); + to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; -// d_fcch_start_pos = d_samples_counter + start_pos; - freq_offset = compute_freq_offset(best_sum, FCCH_HITS_NEEDED); - d_freq_offset -= freq_offset; - DCOUT("freq_offset: " << d_freq_offset); + d_fcch_start_pos = d_counter + start_pos; - end = true; - result = true; - break; + //compute frequency offset + double phase_offset = best_sum / FCCH_HITS_NEEDED; + double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); + d_freq_offset -= freq_offset; + DCOUT("freq_offset: " << d_freq_offset); + + end = true; + result = true; + break; + } case search_fail: end = true; @@ -410,17 +408,24 @@ bool gsm_receiver_cf::find_fcch_burst(const gr_complex *in, const int nitems) } } -// d_samples_counter += to_consume; + d_counter += to_consume; consume_each(to_consume); return result; } -double gsm_receiver_cf::compute_freq_offset(double best_sum, unsigned denominator) +double gsm_receiver_cf::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample) { - float phase_offset, freq_offset; - phase_offset = best_sum / denominator; - freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); + double phase_sum = 0; + unsigned ii; + + for (ii = first_sample; ii < last_sample; ii++) { + double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR; + phase_sum += phase_diff; + } + + double phase_offset = phase_sum / (last_sample - first_sample); + double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); return freq_offset; } @@ -435,14 +440,13 @@ inline float gsm_receiver_cf::compute_phase_diff(gr_complex val1, gr_complex val return gr_fast_atan2f(imag(conjprod), real(conjprod)); } -bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , float *out) +bool gsm_receiver_cf::find_sch_burst(const int nitems) { int to_consume = 0; bool end = false; bool result = false; -// unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR; - const unsigned sample_nr_near_sch_start = (FRAME_BITS - SAFETY_MARGIN + TS_BITS) * d_OSR; - + unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR; + enum states { start, reach_sch, search_not_finished, sch_found } sch_search_state; @@ -453,7 +457,7 @@ bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , fl switch (sch_search_state) { case start: - if (d_samples_counter < sample_nr_near_sch_start) { + if (d_counter < sample_nr_near_sch_start) { sch_search_state = reach_sch; } else { sch_search_state = sch_found; @@ -461,8 +465,8 @@ bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , fl break; case reach_sch: - if (d_samples_counter + nitems >= sample_nr_near_sch_start) { - to_consume = sample_nr_near_sch_start - d_samples_counter; + if (d_counter + nitems >= sample_nr_near_sch_start) { + to_consume = sample_nr_near_sch_start - d_counter; } else { to_consume = nitems; } @@ -482,12 +486,12 @@ bool gsm_receiver_cf::find_sch_burst(const gr_complex *in, const int nitems , fl } } - d_samples_counter += to_consume; + d_counter += to_consume; consume_each(to_consume); return result; } -int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * chan_imp_resp) +int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp) { vector_complex correlation_buffer; vector_float power_buffer; @@ -500,7 +504,7 @@ int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * ch float energy = 0; for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++) { - gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], &in[ii], N_SYNC_BITS - 10); + gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]); correlation_buffer.push_back(correlation); power_buffer.push_back(pow(abs(correlation), 2)); } @@ -527,7 +531,7 @@ int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * ch } strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin(); - d_channel_imp_resp.clear(); +// d_channel_imp_resp.clear(); max_correlation = 0; for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++) { @@ -536,7 +540,7 @@ int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * ch chan_imp_resp_center = ii; max_correlation = abs(correlation); } - d_channel_imp_resp.push_back(correlation); +// d_channel_imp_resp.push_back(correlation); chan_imp_resp[ii] = correlation; } @@ -544,7 +548,7 @@ int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *in, gr_complex * ch return burst_start; } -void gsm_receiver_cf::detect_burst(const gr_complex * in, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary) +void gsm_receiver_cf::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary) { float output[BURST_SIZE]; gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR]; @@ -558,7 +562,7 @@ void gsm_receiver_cf::detect_burst(const gr_complex * in, gr_complex * chan_imp_ rhh[ii] = conj(rhh_temp[ii*d_OSR]); } - mafi(&in[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst); + mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst); viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output); @@ -568,7 +572,7 @@ void gsm_receiver_cf::detect_burst(const gr_complex * in, gr_complex * chan_imp_ } //TODO consider placing this funtion in a separate class for signal processing -void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int ninput, gr_complex * gmsk_output, gr_complex start_point) +void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point) { gr_complex j = gr_complex(0.0, 1.0); @@ -577,7 +581,7 @@ void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int ninput, gr_co int previous_symbol = 2 * input[0] - 1; gmsk_output[0] = start_point; - for (int i = 1; i < ninput; i++) { + for (int i = 1; i < nitems; i++) { //change bits representation to NRZ current_symbol = 2 * input[i] - 1; //differentially encode @@ -589,45 +593,45 @@ void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int ninput, gr_co } //TODO consider use of some generalized function for correlation and placing it in a separate class for signal processing -gr_complex gsm_receiver_cf::correlate_sequence(const gr_complex * sequence, const gr_complex * input_signal, int length) +gr_complex gsm_receiver_cf::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input) { gr_complex result(0.0, 0.0); int sample_number = 0; for (int ii = 0; ii < length; ii++) { sample_number = (ii * d_OSR) ; - result += sequence[ii] * conj(input_signal[sample_number]); + result += sequence[ii] * conj(input[sample_number]); } result = result / gr_complex(length, 0); return result; } -//computes autocorrelation for positive values +//computes autocorrelation for positive arguments //TODO consider placing this funtion in a separate class for signal processing -inline void gsm_receiver_cf::autocorrelation(const gr_complex * input, gr_complex * out, int length) +inline void gsm_receiver_cf::autocorrelation(const gr_complex * input, gr_complex * out, int nitems) { int i, k; - for (k = length - 1; k >= 0; k--) { + for (k = nitems - 1; k >= 0; k--) { out[k] = gr_complex(0, 0); - for (i = k; i < length; i++) { + for (i = k; i < nitems; i++) { out[k] += input[i] * conj(input[i-k]); } } } //TODO consider use of some generalized function for filtering and placing it in a separate class for signal processing -inline void gsm_receiver_cf::mafi(const gr_complex * input, int input_length, gr_complex * filter, int filter_length, gr_complex * output) +inline void gsm_receiver_cf::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output) { int ii = 0, n, a; - for (n = 0; n < input_length; n++) { + for (n = 0; n < nitems; n++) { a = n * d_OSR; output[n] = 0; ii = 0; while (ii < filter_length) { - if ((a + ii) >= input_length*d_OSR) + if ((a + ii) >= nitems*d_OSR) break; output[n] += input[a+ii] * filter[ii]; ii++; @@ -635,7 +639,7 @@ inline void gsm_receiver_cf::mafi(const gr_complex * input, int input_length, gr } } -int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *in, gr_complex * chan_imp_resp, unsigned search_range, int bcc) +int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, unsigned search_range, int bcc) { vector_complex correlation_buffer; vector_float power_buffer; @@ -652,7 +656,7 @@ int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *in, gr_complex * c int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR; for (int ii = search_start_pos; ii < search_stop_pos; ii++) { - gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], &in[ii], N_TRAIN_BITS - 10); + gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]); correlation_buffer.push_back(correlation); power_buffer.push_back(pow(abs(correlation), 2)); @@ -681,7 +685,7 @@ int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *in, gr_complex * c } strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin(); - d_channel_imp_resp.clear(); +// d_channel_imp_resp.clear(); max_correlation = 0; for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++) { @@ -690,7 +694,7 @@ int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *in, gr_complex * c chan_imp_resp_center = ii; max_correlation = abs(correlation); } - d_channel_imp_resp.push_back(correlation); +// d_channel_imp_resp.push_back(correlation); chan_imp_resp[ii] = correlation; } // We want to use the first sample of the impulseresponse, and the |