summaryrefslogtreecommitdiff
path: root/gsm-receiver/src/lib/gsm_receiver_cf.cc
blob: 2660bdc6cc7132f24a6f5a5ab48da4b847fac702 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
/* -*- c++ -*- */
/*
 * @file
 * @author Piotr Krysik <pkrysik@stud.elka.pw.edu.pl>
 * @section LICENSE
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gr_io_signature.h>
#include <gr_math.h>
#include <math.h>
#include <Assert.h>
#include <boost/circular_buffer.hpp>
#include <algorithm>
#include <numeric>
#include <gsm_receiver_cf.h>
#include <viterbi_detector.h>
#include <string.h>
#include <sch.h>


#include "RxBurst.h"
#include "GSMCommon.h"

#define SYNC_SEARCH_RANGE 30
// #define TRAIN_SEARCH_RANGE 40
//FIXME: decide to use this define or not

//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
void decrypt(const unsigned char * burst_binary, byte * KC, unsigned char * decrypted_data, unsigned FN)
{
  byte AtoB[2*DATA_BITS];

  /* KC is all zero: no decryption */

  if(KC[0] == 0 && KC[1] == 0 && KC[2] == 0 && KC[3] == 0 &
     KC[4] == 0 && KC[5] == 0 && KC[6] == 0 && KC[7] == 0) {
    for (int i = 0; i < 148; i++) {
      decrypted_data[i] = burst_binary[i];
    }
    return;
  }

  keysetup(KC, FN);
  runA51(AtoB);

  /* guard bits */
  for (int i = 0; i < 3; i++) {
    decrypted_data[i] = burst_binary[i];
  }

  for (int i = 0; i < 57; i++) {
    decrypted_data[i+3] = AtoB[i] ^ burst_binary[i+3];
  }

  /* stealing bits and midamble */
  for (int i = 60; i < 88; i++) {
    decrypted_data[i] = burst_binary[i];
  }

  for (int i = 0; i < 57; i++) {
    decrypted_data[i+88] = AtoB[i+57] ^ burst_binary[i+88];
  }

  /* guard bits */
  for (int i = 145; i < 148; i++) {
    decrypted_data[i] = burst_binary[i];
  }
}

//TODO: this shouldn't be here */
void dump_bits(const unsigned char * burst_binary, unsigned char * decrypted_data, burst_counter burst_nr, bool first_burst)
{
  int i;

  /* Cipher bits */
  printf("C%d %d %d: ", first_burst, burst_nr.get_frame_nr(), burst_nr.get_frame_nr_mod());
  for (int i = 0; i < 57; i++)
    printf("%d", burst_binary[i+3]);
  for (int i = 0; i < 57; i++)
    printf("%d", burst_binary[i+88]);
  printf("\n");

  /* Plain bits */
  printf("P%d %d %d: ", first_burst, burst_nr.get_frame_nr(), burst_nr.get_frame_nr_mod());
  for (int i = 0; i < 57; i++)
    printf("%d", decrypted_data[i+3]);
  for (int i = 0; i < 57; i++)
    printf("%d", decrypted_data[i+88]);
  printf("\n");

  /* Keystream bits */
  printf("S%d %d %d: ", first_burst, burst_nr.get_frame_nr(), burst_nr.get_frame_nr_mod());
  for (int i = 0; i < 57; i++)
    printf("%d", burst_binary[i+3] ^ decrypted_data[i+3]);
  for (int i = 0; i < 57; i++)
    printf("%d", burst_binary[i+88] ^ decrypted_data[i+88]);
  printf("\n");
}

void gsm_receiver_cf::read_key(std::string key)
{
  printf("Key: '%s'\n", key.c_str());

  int i;
  int b;
  for (i = 0;i < 8;i++) {
    b = d_hex_to_int[(char)key[(i)*2]]*16 + d_hex_to_int[(char)key[i*2+1]];
    d_KC[i] = (byte)b;
  }  
}

void gsm_receiver_cf::read_configuration(std::string configuration)
{
  printf("Configuration: '%s'\n", configuration.c_str());

  if ((char)configuration[0] == 0) {
    printf("  No configuration set.\n");
    return;
  }

  /* get timeslot */
  int ts = atoi(configuration.c_str());
  if (ts < 0 || ts > 7) {
    printf("  Invalid TS: %d\n", ts);
    return;
  }

  printf("  Configuration TS: %d\n", ts);

  if((char)configuration[1] == 'C')
    d_gs_ctx.ts_ctx[ts].type = TST_FCCH_SCH_BCCH_CCCH_SDCCH4;
  else if((char)configuration[1] == 'B')
    d_gs_ctx.ts_ctx[ts].type = TST_FCCH_SCH_BCCH_CCCH;
  else if((char)configuration[1] == 'S')
    d_gs_ctx.ts_ctx[ts].type = TST_SDCCH8;
  else if((char)configuration[1] == 'T')
    d_gs_ctx.ts_ctx[ts].type = TST_TCHF;
  else {
    printf("  Invalid configuration: %c\n", (char)configuration[1]);
    return;
  }
  /* any other timeslot than 0: turn TS0 off */
  if(ts != 0) {
    d_gs_ctx.ts_ctx[0].type = TST_OFF;
    d_trace_sch = false;
    printf("  TS0 is turned off\n");
  }
}

void gsm_receiver_cf::process_normal_burst(burst_counter burst_nr, const unsigned char * burst_binary, bool first_burst)
{
  unsigned char decrypted_data[148];
  float decrypted_data_float[148];
  unsigned char * voice_frame;
  int ts = burst_nr.get_timeslot_nr();

  /* no processing if turned off*/
  if (d_gs_ctx.ts_ctx[ts].type == TST_OFF)
    return;

  /* handle traffic timeslots */
#if 0
  /* always try to decrypt and decode traffic in TS 1...7 */
  /* TODO: this will fail if there is unencrypted traffic in more than one TS */
  if (burst_nr.get_timeslot_nr() >= 1 && burst_nr.get_timeslot_nr() <= 7) {
#else
  if (d_gs_ctx.ts_ctx[ts].type == TST_TCHF) {
#endif
    decrypt(burst_binary, d_KC, decrypted_data, burst_nr.get_frame_nr_mod());

    if (burst_nr.get_t2() == 12 || burst_nr.get_t2() == 25) { /* SACCH of Full Rate TCH */
      if (ts % 2 == 0) /* SACH position and start depends on the timeslot */
        first_burst = (burst_nr.get_frame_nr() % 104) == (12 + 26 * (ts / 2));
      else
        first_burst = (burst_nr.get_frame_nr() % 104) == (25 + 26 * ((ts - 1) / 2));
#if 0 /* dump cipher, plain and keystream bits */
      dump_bits(burst_binary, decrypted_data, burst_nr, first_burst);
#endif
      GS_process(&d_gs_ctx, TIMESLOT0 + ts, NORMAL, &decrypted_data[3], burst_nr.get_frame_nr(), first_burst);
    } else {
      int i;
      for (i = 0; i< 148; i++)
	decrypted_data_float[i] = decrypted_data[i];

      GSM::Time time(burst_nr.get_frame_nr(), ts);
      GSM::RxBurst rxbrst(decrypted_data_float, time);
      if (ts - TIMESLOT1 >= 0 && ts - TIMESLOT1 < N_TCH_DECODER) {
	if ( d_tch_decoder[ts - TIMESLOT1]->processBurst( rxbrst ) == true)
	  fwrite(d_tch_decoder[ts - TIMESLOT1]->get_voice_frame(), 1 , 33, d_gsm_file);
	else if(rxbrst.Hl() || rxbrst.Hu()) {
	  /* Stolen bits are set, might be FACCH */
	  GS_process(&d_gs_ctx, TIMESLOT0 + ts, NORMAL, &decrypted_data[3], burst_nr.get_frame_nr(), first_burst);
        }
      }
    }
  }

  /* handle SDCCH/8 timeslots */
  if (d_gs_ctx.ts_ctx[ts].type == TST_SDCCH8) {
    decrypt(burst_binary, d_KC, decrypted_data, burst_nr.get_frame_nr_mod());
    #if 1 /* dump cipher, plain and keystream bits */
    dump_bits(burst_binary, decrypted_data, burst_nr, first_burst);
    #endif
    GS_process(&d_gs_ctx, TIMESLOT0 + ts, NORMAL, &decrypted_data[3], burst_nr.get_frame_nr(), first_burst);
  }

  /* TS0 is special (TODO) */
  if (ts == 0) {
    memcpy(decrypted_data, burst_binary, sizeof(decrypted_data));
    if (d_gs_ctx.ts_ctx[ts].type == TST_FCCH_SCH_BCCH_CCCH_SDCCH4) {
      if (SDCCH_SACCH_4_MAP[burst_nr.get_frame_nr() % 51] != 0) { /* SDCCH/4 or SACCH/4 */
        decrypt(burst_binary, d_KC, decrypted_data, burst_nr.get_frame_nr_mod());
        #if 1 /* dump cipher, plain and keystream bits */
        dump_bits(burst_binary, decrypted_data, burst_nr, first_burst);
        #endif
      }
    }
    GS_process(&d_gs_ctx, TIMESLOT0 + ts, NORMAL, &decrypted_data[3], burst_nr.get_frame_nr(), first_burst);
  }

}
//TODO: this shouldn't be here also - the same reason
void gsm_receiver_cf::configure_receiver()
{
  int ts;
  printf("configure_receiver\n");

  /* configure TS0, TS0 is special (TODO)  */

  d_channel_conf.set_multiframe_type(TIMESLOT0, multiframe_51);
  d_channel_conf.set_burst_types(TIMESLOT0, TEST_CCH_FRAMES, TEST_CCH_FIRST, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), normal_burst);
  /* FCCH bursts */
  d_channel_conf.set_burst_types(TIMESLOT0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);
  /* SCH bursts */
  d_channel_conf.set_burst_types(TIMESLOT0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst);

  /* configure TS1...TS7 */

  for (ts = TIMESLOT1; ts < TIMESLOT7; ts++) {
    if (d_gs_ctx.ts_ctx[ts].type == TST_TCHF) {
      d_channel_conf.set_multiframe_type(ts, multiframe_26);
      d_channel_conf.set_burst_types(ts, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
      /* SACH position depends on the timeslot */
      if (ts % 2 == 0) {
	d_channel_conf.set_single_burst_type(ts, 12, normal_burst); /* SACCH for even timeslots */
	d_channel_conf.set_single_burst_type(ts, 25, empty); /* IDLE for even timeslots */
      } else {
	d_channel_conf.set_single_burst_type(ts, 12, empty); /* IDLE for odd timeslots */
	d_channel_conf.set_single_burst_type(ts, 25, normal_burst); /* SACCH for odd timeslots */
      }
    }
    else if (d_gs_ctx.ts_ctx[ts].type == TST_SDCCH8) {
      d_channel_conf.set_multiframe_type(ts, multiframe_51);
      d_channel_conf.set_burst_types(ts, SDCCH_SACCH_8_FRAMES, SDCCH_SACCH_8_FIRST, sizeof(SDCCH_SACCH_8_FRAMES) / sizeof(unsigned), dummy_or_normal);  
    }
  }
}


typedef std::list<float> list_float;
typedef std::vector<float> vector_float;

typedef boost::circular_buffer<float> circular_buffer_float;

gsm_receiver_cf_sptr
gsm_make_receiver_cf(gr_feval_dd *tuner, gr_feval_dd *synchronizer, int osr, std::string key, std::string configuration)
{
  return gsm_receiver_cf_sptr(new gsm_receiver_cf(tuner, synchronizer, osr, key, configuration));
}

static const int MIN_IN = 1; // mininum number of input streams
static const int MAX_IN = 1; // maximum number of input streams
static const int MIN_OUT = 0; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams

/*
 * The private constructor
 */
gsm_receiver_cf::gsm_receiver_cf(gr_feval_dd *tuner, gr_feval_dd *synchronizer, int osr, std::string key, std::string configuration)
    : gr_block("gsm_receiver",
               gr_make_io_signature(MIN_IN, MAX_IN, sizeof(gr_complex)),
               gr_make_io_signature(MIN_OUT, MAX_OUT, 142 * sizeof(float))),
    d_OSR(osr),
    d_chan_imp_length(CHAN_IMP_RESP_LENGTH),
    d_tuner(tuner),
    d_counter(0),
    d_fcch_start_pos(0),
    d_freq_offset(0),
    d_state(first_fcch_search),
    d_burst_nr(osr),
    d_failed_sch(0),
    d_trace_sch(true)
{
  int i;
  gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0));
  for (i = 0; i < TRAIN_SEQ_NUM; i++) {
    gr_complex startpoint;
    if (i == 6 || i == 7) {                           //this is nasty hack
      startpoint = gr_complex(-1.0, 0.0);   //if I don't change it here all bits of normal bursts for BTSes with bcc=6 will have reversed values
    } else {
      startpoint = gr_complex(1.0, 0.0);    //I've checked this hack for bcc==0,1,2,3,4,6
    }                                       //I don't know what about bcc==5 and 7 yet
    //TODO:find source of this situation - this is purely mathematical problem I guess

    gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], startpoint);
  }

  for (i = 0; i < N_TCH_DECODER; i++)
    d_tch_decoder[i] = new GSM::TCHFACCHL1Decoder(GSM::gFACCH_TCHFMapping);

  d_gsm_file = fopen( "speech.au.gsm", "wb" ); //!!
  d_hex_to_int['0'] = 0; //!!
  d_hex_to_int['4'] = 4; //!!
  d_hex_to_int['8'] = 8; //!!
  d_hex_to_int['c'] = 0xc; //!!
  d_hex_to_int['1'] = 1; //!!
  d_hex_to_int['5'] = 5; //!!
  d_hex_to_int['9'] = 9; //!!
  d_hex_to_int['d'] = 0xd; //!!
  d_hex_to_int['2'] = 2; //!!
  d_hex_to_int['6'] = 6; //!!
  d_hex_to_int['a'] = 0xa; //!!
  d_hex_to_int['e'] = 0xe; //!!
  d_hex_to_int['3'] = 3; //!!
  d_hex_to_int['7'] = 7; //!!
  d_hex_to_int['b'] = 0xb; //!!
  d_hex_to_int['f'] = 0xf; //!!
  read_key(key); //!!

  /* Initialize GSM Stack, clear d_gs_ctx */
  GS_new(&d_gs_ctx); //TODO: remove it! it's not a right place for a decoder

  /* configuration is stored in d_gs_ctx */
  read_configuration(configuration);

  configure_receiver();
}

/*
 * Virtual destructor.
 */
gsm_receiver_cf::~gsm_receiver_cf()
{
}

void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &nitems_items_required)
{
  nitems_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR);
}

int
gsm_receiver_cf::general_work(int noutput_items,
                              gr_vector_int &nitems_items,
                              gr_vector_const_void_star &input_items,
                              gr_vector_void_star &output_items)
{
  const gr_complex *input = (const gr_complex *) input_items[0];
  //float *out = (float *) output_items[0];
  int produced_out = 0;  //how many output elements were produced - this isn't used yet
  //probably the gsm receiver will be changed into sink so this variable won't be necessary

  switch (d_state) {
      //bootstrapping
    case first_fcch_search:
      if (find_fcch_burst(input, nitems_items[0])) { //find frequency correction burst in the input buffer
        set_frequency(d_freq_offset);                //if fcch search is successful set frequency offset
        //produced_out = 0;
        d_state = next_fcch_search;
      } else {
        //produced_out = 0;
        d_state = first_fcch_search;
      }
      break;

    case next_fcch_search: {                         //this state is used because it takes some time (a bunch of buffered samples)
        float prev_freq_offset = d_freq_offset;        //before previous set_frequqency cause change
        if (find_fcch_burst(input, nitems_items[0])) {
          if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET) {
            set_frequency(d_freq_offset);              //call set_frequncy only frequency offset change is greater than some value
          }
          //produced_out = 0;
          d_state = sch_search;
        } else {
          //produced_out = 0;
          d_state = next_fcch_search;
        }
        break;
      }

    case sch_search: {
        vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
        int t1, t2, t3;
        int burst_start = 0;
        unsigned char output_binary[BURST_SIZE];

        if (reach_sch_burst(nitems_items[0])) {                              //wait for a SCH burst
          burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it
          detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection
          if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { //decode SCH burst
            if(d_trace_sch)
            {
              DCOUT("sch burst_start: " << burst_start);
              DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
            }
            d_burst_nr.set(t1, t2, t3, 0);                                  //set counter of bursts value

            #if 0 /* Dieter: now done in constructor */
            //configure the receiver - tell him where to find which burst type
            d_channel_conf.set_multiframe_type(TIMESLOT0, multiframe_51);  //in the timeslot nr.0 bursts changes according to t3 counter
            configure_receiver();//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
            // Dieter: don't call it, otherwise overwrites configuration of configure_receiver()
            d_channel_conf.set_burst_types(TIMESLOT0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);  //tell where to find fcch bursts
            d_channel_conf.set_burst_types(TIMESLOT0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst);     //sch bursts
            d_channel_conf.set_burst_types(TIMESLOT0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst);//!and maybe normal bursts of the BCCH logical channel
            #endif

            d_burst_nr++;

            consume_each(burst_start + BURST_SIZE * d_OSR);   //consume samples up to next guard period
            d_state = synchronized;
          } else {
            d_state = next_fcch_search;                       //if there is error in the sch burst go back to fcch search phase
          }
        } else {
          d_state = sch_search;
        }
        break;
      }
      //in this state receiver is synchronized and it processes bursts according to burst type for given burst number
    case synchronized: {
        vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
        int burst_start;
        int offset = 0;
        int to_consume = 0;
        unsigned char output_binary[BURST_SIZE];

        burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number
        bool first_burst = d_channel_conf.get_first_burst(d_burst_nr); // first burst of four ?

        switch (b_type) {
          case fcch_burst: {                                                                    //if it's FCCH  burst
              const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
              const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR - TAIL_BITS * d_OSR;
              double freq_offset = compute_freq_offset(input, first_sample, last_sample);       //extract frequency offset from it

              d_freq_offset_vals.push_front(freq_offset);

              if (d_freq_offset_vals.size() >= 10) {
                double sum = std::accumulate(d_freq_offset_vals.begin(), d_freq_offset_vals.end(), 0);
                double mean_offset = sum / d_freq_offset_vals.size();                           //compute mean
                d_freq_offset_vals.clear();
                if (abs(mean_offset) > FCCH_MAX_FREQ_OFFSET) {
                  d_freq_offset -= mean_offset;                                                 //and adjust frequency if it have changed beyond
                  set_frequency(d_freq_offset);                                                 //some limit
                  DCOUT("mean_offset: " << mean_offset);
                  DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n");
                }
              }
            }
            break;
          case sch_burst: {                                                                    //if it's SCH burst
              int t1, t2, t3, d_ncc, d_bcc;
              burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]);                //get channel impulse response
              detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);           //MLSE detection of bits
              if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) {         //and decode SCH data
                // d_burst_nr.set(t1, t2, t3, 0);                                              //but only to check if burst_start value is correct
                d_failed_sch = 0;
                offset =  burst_start - floor((GUARD_PERIOD) * d_OSR);                         //compute offset from burst_start - burst should start after a guard period
                if(d_trace_sch)
                {
                  DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
                  DCOUT(offset);
                }
                to_consume += offset;                                                          //adjust with offset number of samples to be consumed
              } else {
                d_failed_sch++;
                if (d_failed_sch >= MAX_SCH_ERRORS) {
//                   d_state = next_fcch_search;        //TODO: this isn't good, the receiver is going wild when it goes back to next_fcch_search from here
//                   d_freq_offset_vals.clear();
                  DCOUT("many sch decoding errors");
                }
              }
            }
            break;

          case normal_burst:                                                                  //if it's normal burst
            burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], d_bcc); //get channel impulse response for given training sequence number - d_bcc
            detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);            //MLSE detection of bits
            process_normal_burst(d_burst_nr, output_binary, first_burst); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
            break;

          case dummy_or_normal: {
              burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TS_DUMMY);
              detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);

              std::vector<unsigned char> v(20);
              std::vector<unsigned char>::iterator it;
              it = std::set_difference(output_binary + TRAIN_POS, output_binary + TRAIN_POS + 16, &train_seq[TS_DUMMY][5], &train_seq[TS_DUMMY][21], v.begin());
              int different_bits = (it - v.begin());

              if (different_bits > 2) {
                burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], d_bcc);
                detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
                if (!output_binary[0] && !output_binary[1] && !output_binary[2]) {
                  process_normal_burst(d_burst_nr, output_binary, first_burst); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
                }
              }
            }
          case rach_burst:
            //implementation of this channel isn't possible in current gsm_receiver
            //it would take some realtime processing, counter of samples from USRP to
            //stay synchronized with this device and possibility to switch frequency from  uplink
            //to C0 (where sch is) back and forth

            break;
          case dummy:                                                         //if it's dummy
            burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TS_DUMMY); //read dummy
            detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);   // but as far as I know it's pointless
            break;
          case empty:   //if it's empty burst
            break;      //do nothing
        }

        d_burst_nr++;   //go to next burst

        to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset();  //consume samples of the burst up to next guard period
        //and add offset which is introduced by
        //0.25 fractional part of a guard period
        //burst_number computes this offset
        //but choice of this class to do this was random
        consume_each(to_consume);
      }
      break;
  }

  return produced_out;
}

bool gsm_receiver_cf::find_fcch_burst(const gr_complex *input, const int nitems)
{
  circular_buffer_float phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find
  //best match for FCCH burst
  float phase_diff = 0;
  gr_complex conjprod;
  int start_pos = -1;
  int hit_count = 0;
  int miss_count = 0;
  float min_phase_diff;
  float max_phase_diff;
  double best_sum = 0;
  float lowest_max_min_diff = 99999;

  int to_consume = 0;
  int sample_number = 0;
  bool end = false;
  bool result = false;
  circular_buffer_float::iterator buffer_iter;

  /**@name Possible states of FCCH search algorithm*/
  //@{
  enum states {
    init,               ///< initialize variables
    search,             ///< search for positive samples
    found_something,    ///< search for FCCH and the best position of it
    fcch_found,         ///< when FCCH was found
    search_fail         ///< when there is no FCCH in the input vector
  } fcch_search_state;
  //@}

  fcch_search_state = init;

  while (!end) {
    switch (fcch_search_state) {

      case init: //initialize variables
        hit_count = 0;
        miss_count = 0;
        start_pos = -1;
        lowest_max_min_diff = 99999;
        phase_diff_buffer.clear();
        fcch_search_state = search;

        break;

      case search: // search for positive samples
        sample_number++;

        if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR) { //if it isn't possible to find FCCH because
          //there's too few samples left to look into,
          to_consume = sample_number;                            //don't do anything with those samples which are left
          //and consume only those which were checked
          fcch_search_state = search_fail;
        } else {
          phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);

          if (phase_diff > 0) {                                 //if a positive phase difference was found
            to_consume = sample_number;
            fcch_search_state = found_something;                //switch to state in which searches for FCCH
          } else {
            fcch_search_state = search;
          }
        }

        break;

      case found_something: {// search for FCCH and the best position of it
          if (phase_diff > 0) {
            hit_count++;       //positive phase differencies increases hits_count
          } else {
            miss_count++;      //negative increases miss_count
          }

          if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) {
            //if miss_count exceeds limit before hit_count
            fcch_search_state = init;       //go to init
            continue;
          } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) {
            //if hit_count and miss_count exceeds limit then FCCH was found
            fcch_search_state = fcch_found;
            continue;
          } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) {
            //find difference between minimal and maximal element in the buffer
            //for FCCH this value should be low
            //this part is searching for a region where this value is lowest
            min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
            max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));

            if (lowest_max_min_diff > max_phase_diff - min_phase_diff) {
              lowest_max_min_diff = max_phase_diff - min_phase_diff;
              start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos
              best_sum = 0;

              for (buffer_iter = phase_diff_buffer.begin();
                   buffer_iter != (phase_diff_buffer.end());
                   buffer_iter++) {
                best_sum += *buffer_iter - (M_PI / 2) / d_OSR;   //store best value of phase offset sum
              }
            }
          }

          sample_number++;

          if (sample_number >= nitems) {    //if there's no single sample left to check
            fcch_search_state = search_fail;//FCCH search failed
            continue;
          }

          phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
          phase_diff_buffer.push_back(phase_diff);
          fcch_search_state = found_something;
        }
        break;

      case fcch_found: {
          DCOUT("fcch found on position: " << d_counter + start_pos);
          to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst

          d_fcch_start_pos = d_counter + start_pos;

          //compute frequency offset
          double phase_offset = best_sum / FCCH_HITS_NEEDED;
          double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
          d_freq_offset -= freq_offset;
          DCOUT("freq_offset: " << d_freq_offset);

          end = true;
          result = true;
          break;
        }

      case search_fail:
        end = true;
        result = false;
        break;
    }
  }

  d_counter += to_consume;
  consume_each(to_consume);

  return result;
}

double gsm_receiver_cf::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample)
{
  double phase_sum = 0;
  unsigned ii;

  for (ii = first_sample; ii < last_sample; ii++) {
    double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR;
    phase_sum += phase_diff;
  }

  double phase_offset = phase_sum / (last_sample - first_sample);
  double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
  return freq_offset;
}

void gsm_receiver_cf::set_frequency(double freq_offset)
{
  d_tuner->calleval(freq_offset);
}

inline float gsm_receiver_cf::compute_phase_diff(gr_complex val1, gr_complex val2)
{
  gr_complex conjprod = val1 * conj(val2);
  return gr_fast_atan2f(imag(conjprod), real(conjprod));
}

bool gsm_receiver_cf::reach_sch_burst(const int nitems)
{
  //it just consumes samples to get near to a SCH burst
  int to_consume = 0;
  bool result = false;
  unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;

  //consume samples until d_counter will be equal to sample_nr_near_sch_start
  if (d_counter < sample_nr_near_sch_start) {
    if (d_counter + nitems >= sample_nr_near_sch_start) {
      to_consume = sample_nr_near_sch_start - d_counter;
    } else {
      to_consume = nitems;
    }
    result = false;
  } else {
    to_consume = 0;
    result = true;
  }

  d_counter += to_consume;
  consume_each(to_consume);
  return result;
}

int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp)
{
  vector_complex correlation_buffer;
  vector_float power_buffer;
  vector_float window_energy_buffer;

  int strongest_window_nr;
  int burst_start = 0;
  int chan_imp_resp_center = 0;
  float max_correlation = 0;
  float energy = 0;

  for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++) {
    gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]);
    correlation_buffer.push_back(correlation);
    power_buffer.push_back(pow(abs(correlation), 2));
  }

  //compute window energies
  vector_float::iterator iter = power_buffer.begin();
  bool loop_end = false;
  while (iter != power_buffer.end()) {
    vector_float::iterator iter_ii = iter;
    energy = 0;

    for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++) {
      if (iter_ii == power_buffer.end()) {
        loop_end = true;
        break;
      }
      energy += (*iter_ii);
    }
    if (loop_end) {
      break;
    }
    iter++;
    window_energy_buffer.push_back(energy);
  }

  strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
//   d_channel_imp_resp.clear();

  max_correlation = 0;
  for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++) {
    gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
    if (abs(correlation) > max_correlation) {
      chan_imp_resp_center = ii;
      max_correlation = abs(correlation);
    }
//     d_channel_imp_resp.push_back(correlation);
    chan_imp_resp[ii] = correlation;
  }

  burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR;
  return burst_start;
}

void gsm_receiver_cf::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
{
  float output[BURST_SIZE];
  gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR];
  gr_complex rhh[CHAN_IMP_RESP_LENGTH];
  gr_complex filtered_burst[BURST_SIZE];
  int start_state = 3;
  unsigned int stop_states[2] = {4, 12};

  autocorrelation(chan_imp_resp, rhh_temp, d_chan_imp_length*d_OSR);
  for (int ii = 0; ii < (d_chan_imp_length); ii++) {
    rhh[ii] = conj(rhh_temp[ii*d_OSR]);
  }

  mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);

  viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output);

  for (int i = 0; i < BURST_SIZE ; i++) {
    output_binary[i] = (output[i] > 0);
  }
}

//TODO consider placing this funtion in a separate class for signal processing
void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point)
{
  gr_complex j = gr_complex(0.0, 1.0);

  int current_symbol;
  int encoded_symbol;
  int previous_symbol = 2 * input[0] - 1;
  gmsk_output[0] = start_point;

  for (int i = 1; i < nitems; i++) {
    //change bits representation to NRZ
    current_symbol = 2 * input[i] - 1;
    //differentially encode
    encoded_symbol = current_symbol * previous_symbol;
    //and do gmsk mapping
    gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1];
    previous_symbol = current_symbol;
  }
}

//TODO consider use of some generalized function for correlation and placing it in a separate class  for signal processing
gr_complex gsm_receiver_cf::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input)
{
  gr_complex result(0.0, 0.0);
  int sample_number = 0;

  for (int ii = 0; ii < length; ii++) {
    sample_number = (ii * d_OSR) ;
    result += sequence[ii] * conj(input[sample_number]);
  }

  result = result / gr_complex(length, 0);
  return result;
}

//computes autocorrelation for positive arguments
//TODO consider placing this funtion in a separate class for signal processing
inline void gsm_receiver_cf::autocorrelation(const gr_complex * input, gr_complex * out, int nitems)
{
  int i, k;
  for (k = nitems - 1; k >= 0; k--) {
    out[k] = gr_complex(0, 0);
    for (i = k; i < nitems; i++) {
      out[k] += input[i] * conj(input[i-k]);
    }
  }
}

//TODO consider use of some generalized function for filtering and placing it in a separate class  for signal processing
inline void gsm_receiver_cf::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output)
{
  int ii = 0, n, a;

  for (n = 0; n < nitems; n++) {
    a = n * d_OSR;
    output[n] = 0;
    ii = 0;

    while (ii < filter_length) {
      if ((a + ii) >= nitems*d_OSR)
        break;
      output[n] += input[a+ii] * filter[ii];
      ii++;
    }
  }
}

//TODO: get_norm_chan_imp_resp is similar to get_sch_chan_imp_resp - consider joining this two functions
//TODO: this is place where most errors are introduced and can be corrected by improvements to this fuction
//especially computations of strongest_window_nr
int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, int bcc)
{
  vector_complex correlation_buffer;
  vector_float power_buffer;
  vector_float window_energy_buffer;

  int strongest_window_nr;
  int burst_start = 0;
  int chan_imp_resp_center = 0;
  float max_correlation = 0;
  float energy = 0;

  int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR);
  int search_start_pos = search_center + 1;
//   int search_start_pos = search_center -  d_chan_imp_length * d_OSR;
  int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR;

  for (int ii = search_start_pos; ii < search_stop_pos; ii++) {
    gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]);

    correlation_buffer.push_back(correlation);
    power_buffer.push_back(pow(abs(correlation), 2));
  }

  //compute window energies
  vector_float::iterator iter = power_buffer.begin();
  bool loop_end = false;
  while (iter != power_buffer.end()) {
    vector_float::iterator iter_ii = iter;
    energy = 0;

    for (int ii = 0; ii < (d_chan_imp_length - 2)*d_OSR; ii++, iter_ii++) {
//    for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++, iter_ii++) {
      if (iter_ii == power_buffer.end()) {
        loop_end = true;
        break;
      }
      energy += (*iter_ii);
    }
    if (loop_end) {
      break;
    }
    iter++;

    window_energy_buffer.push_back(energy);
  }
  //!why doesn't this work
  strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
  strongest_window_nr = 3; //! so I have to override it here

  max_correlation = 0;
  for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++) {
    gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
    if (abs(correlation) > max_correlation) {
      chan_imp_resp_center = ii;
      max_correlation = abs(correlation);
    }
//     d_channel_imp_resp.push_back(correlation);
    chan_imp_resp[ii] = correlation;
  }
  // We want to use the first sample of the impulseresponse, and the
  // corresponding samples of the received signal.
  // the variable sync_w should contain the beginning of the used part of
  // training sequence, which is 3+57+1+6=67 bits into the burst. That is
  // we have that sync_t16 equals first sample in bit number 67.

  burst_start = search_start_pos + chan_imp_resp_center + strongest_window_nr - TRAIN_POS * d_OSR;

  // GMSK modulator introduces ISI - each bit is expanded for 3*Tb
  // and it's maximum value is in the last bit period, so burst starts
  // 2*Tb earlier
  burst_start -= 2 * d_OSR;
  burst_start += 2;
  //std::cout << " burst_start: " << burst_start << " center: " << ((float)(search_start_pos + strongest_window_nr + chan_imp_resp_center)) / d_OSR << " stronegest window nr: " <<  strongest_window_nr << "\n";

  return burst_start;
}

personal git repositories of Harald Welte. Your mileage may vary