blob: 33e66b3b2dda3030daddb3dde1939dfd80fe43e6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
/* -*- c++ -*- */
/*
* @file
* @author Piotr Krysik <pkrysik@stud.elka.pw.edu.pl>
* @section LICENSE
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*
* @section DESCRIPTION
* This file contains classes which define gsm_receiver configuration
* and the burst_counter which is used to store internal state of the receiver
* when it's synchronized
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gsm_receiver_config.h>
burst_counter & burst_counter::operator++(int)
{
d_timeslot_nr++;
if (d_timeslot_nr == TS_PER_FRAME) {
d_timeslot_nr = 0;
if ((d_t2 == 25) && (d_t3 == 50)) {
d_t1 = (d_t1 + 1) % (1 << 11);
}
d_t2 = (d_t2 + 1) % 26;
d_t3 = (d_t3 + 1) % 51;
}
//update offset - this is integer for d_OSR which is multiple of four
d_offset_fractional += GUARD_FRACTIONAL * d_OSR;
d_offset_integer = floor(d_offset_fractional);
d_offset_fractional = d_offset_fractional - d_offset_integer;
return (*this);
}
void burst_counter::set(uint32_t t1, uint32_t t2, uint32_t t3, uint32_t timeslot_nr)
{
d_t1 = t1;
d_t2 = t2;
d_t3 = t3;
d_timeslot_nr = timeslot_nr;
double first_sample_position = (get_frame_nr() * 8 + timeslot_nr) * TS_BITS;
d_offset_fractional = first_sample_position - floor(first_sample_position);
d_offset_integer = 0;
}
burst_type channel_configuration::get_burst_type(burst_counter burst_nr)
{
uint32_t timeslot_nr = burst_nr.get_timeslot_nr();
multiframe_type m_type = d_timeslots_descriptions[timeslot_nr].get_type();
uint32_t nr;
switch (m_type) {
case multiframe_26:
nr = burst_nr.get_t2();
break;
case multiframe_51:
nr = burst_nr.get_t3();
break;
default:
nr = 0;
break;
}
return d_timeslots_descriptions[timeslot_nr].get_burst_type(nr);
}
bool channel_configuration::get_first_burst(burst_counter burst_nr)
{
uint32_t timeslot_nr = burst_nr.get_timeslot_nr();
multiframe_type m_type = d_timeslots_descriptions[timeslot_nr].get_type();
uint32_t nr;
switch (m_type) {
case multiframe_26:
nr = burst_nr.get_t2();
break;
case multiframe_51:
nr = burst_nr.get_t3();
break;
default:
nr = 0;
break;
}
return d_timeslots_descriptions[timeslot_nr].get_first_burst(nr);
}
|