1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
|
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "gsm_burst.h"
#include <gr_math.h>
#include <stdio.h>
#include <math.h>
#include <memory.h>
#include <assert.h>
#include "system.h"
#include "gsmstack.h"
gsm_burst::gsm_burst (gr_feval_ll *t) :
p_tuner(t),
d_clock_options(DEFAULT_CLK_OPTS),
d_print_options(0),
d_test_options(0),
d_hop_good_arfcn(1),
d_hop_bad_arfcn(2),
d_equalizer_type(EQ_FIXED_DFE)
{
// fprintf(stderr,"gsm_burst: enter constructor (t=%8.8x)\n",(unsigned int)t);
// M_PI = M_PI; //4.0 * atan(1.0);
full_reset();
//encode sync bits
float tsync[N_SYNC_BITS];
for (int i=0; i < N_SYNC_BITS; i++) {
tsync[i] = 2.0*SYNC_BITS[i] - 1.0;
}
diff_encode(tsync,corr_sync,N_SYNC_BITS);
/*
fprintf(stderr," Sync: ");
print_bits(tsync,N_SYNC_BITS);
fprintf(stderr,"\n");
fprintf(stderr,"DSync: ");
print_bits(corr_sync,N_SYNC_BITS);
fprintf(stderr,"\n\n");
*/
for (int i=0; i < 10; i++) {
for (int j=0; j < N_TRAIN_BITS; j++) {
tsync[j] = 2.0*train_seq[i][j] - 1.0;
}
diff_encode(tsync,corr_train_seq[i],N_TRAIN_BITS);
/*
fprintf(stderr,"TSC%d: ",i);
print_bits(corr_train_seq[i],N_TRAIN_BITS);
fprintf(stderr,"\n");
*/
}
/* Initialize GSM Stack */
GS_new(&d_gs_ctx);
}
gsm_burst::~gsm_burst ()
{
}
void gsm_burst::sync_reset(void)
{
d_sync_state = WAIT_FCCH;
d_last_good = 0;
d_last_sch = 0;
d_burst_count = 0;
}
//TODO: check this for thread safeness
void gsm_burst::full_reset(void)
{
sync_reset();
d_sync_loss_count=0;
d_fcch_count=0;
d_part_sch_count=0;
d_sch_count=0;
d_normal_count=0;
d_dummy_count=0;
d_unknown_count=0;
d_total_count=0;
d_freq_offset=0.0;
d_freq_off_sum=0.0;
d_freq_off_weight=0;
d_ts=0;
d_bbuf_pos=0;
d_burst_start=MAX_CORR_DIST;
d_sample_count=0;
d_last_burst_s_count=0;
d_corr_pattern=0;
d_corr_pat_size=0;
d_corr_max=0.0;
d_corr_maxpos=0;
d_corr_center=0;
d_last_sync_state=WAIT_FCCH;
}
float gsm_burst::mean_freq_offset(void)
{
if (d_freq_off_weight)
return d_freq_off_sum / d_freq_off_weight;
else
return 0.0;
}
void gsm_burst::diff_encode(const float *in,float *out,int length,float lastbit) {
for (int i=0; i < length; i++) {
out[i] = in[i] * lastbit;
lastbit=in[i];
}
}
void gsm_burst::diff_decode(const float *in,float *out,int length,float lastbit) {
for (int i=0; i < length; i++) {
out[i] = in[i] * lastbit;
lastbit = out [i];
}
}
void gsm_burst::diff_decode_burst(void) {
char lastbit = 0;
//slice
for (int i = 0; i < USEFUL_BITS; i++) {
d_decoded_burst[i] = d_burst_buffer[d_burst_start + i] > 0 ? 0 : 1;
}
//diff decode
for (int i=0; i < USEFUL_BITS; i++) {
d_decoded_burst[i] ^= lastbit;
lastbit = d_decoded_burst[i];
}
}
void gsm_burst::print_hex(const unsigned char *data,int length)
{
unsigned char tbyte;
int i,bitpos=0;
assert(data);
assert(length >= 0);
while (bitpos < length) {
tbyte = 0;
for (i=0; (i < 8) && (bitpos < length); i++) {
tbyte <<= 1;
tbyte |= data[bitpos++];
}
if (i<8)
tbyte <<= 8 - i;
fprintf(stdout,"%2.2X ",tbyte);
}
}
void gsm_burst::print_bits(const float *data,int length)
{
assert(data);
assert(length >= 0);
for (int i=0; i < length; i++)
data[i] < 0 ? fprintf(stderr,"+") : fprintf(stderr,".");
}
#if 0
void gsm_burst::soft2hardbit(char *dst, const float *data, int len)
{
for (int i=0; i < len; i++)
{
if (data[i] < 0)
dst[i] = 0;
else
dst[i] = 1;
}
}
#endif
void gsm_burst::print_burst(void)
{
int bursts_since_sch;
int print = 0;
//fprintf(stderr,"p=%8.8X ", d_print_options);
if ( PRINT_GSM_DECODE & d_print_options ) {
/*
* Pass information to GSM stack. GSM stack will try to extract
* information (fn, layer 2 messages, ...)
*/
diff_decode_burst();
GS_process(&d_gs_ctx, d_ts, d_burst_type, d_decoded_burst);
}
if ( PRINT_EVERYTHING == d_print_options )
print = 1;
else if ( (!d_ts) && (d_print_options & PRINT_TS0) )
print = 1;
else if ( (DUMMY == d_burst_type) && (d_print_options & PRINT_DUMMY) )
print = 1;
else if ( (NORMAL == d_burst_type) && (d_print_options & PRINT_NORMAL) )
print = 1;
else if ( (SCH == d_burst_type) && (d_print_options & PRINT_SCH) )
print = 1;
else if ( (FCCH == d_burst_type) && (d_print_options & PRINT_FCCH) )
print = 1;
else if ( (UNKNOWN == d_burst_type) && (d_print_options & PRINT_UNKNOWN) )
print = 1;
if ( print && (d_print_options & PRINT_BITS) ) {
if (d_print_options & PRINT_ALL_BITS)
{
print_bits(d_burst_buffer,BBUF_SIZE);
} else {
/* 142 useful bits: 2*58 + 26 training */
print_bits(d_burst_buffer + d_burst_start,USEFUL_BITS);
}
fprintf(stderr," ");
}
if (print) {
fprintf(stderr,"%d/%d/%+d/%lu/%lu ",
d_sync_state,
d_ts,
d_burst_start - MAX_CORR_DIST,
d_sample_count,
d_sample_count - d_last_burst_s_count);
switch (d_burst_type) {
case FCCH:
fprintf(stderr,"[FCCH] foff:%g cnt:%lu",d_freq_offset,d_fcch_count);
break;
case PARTIAL_SCH:
bursts_since_sch = d_burst_count - d_last_sch;
fprintf(stderr,"[P-SCH] cor:%.2f last:%d cnt: %lu",
d_corr_max,bursts_since_sch,d_sch_count);
break;
case SCH:
bursts_since_sch = d_burst_count - d_last_sch;
fprintf(stderr,"[SCH] cor:%.2f last:%d cnt: %lu",
d_corr_max,bursts_since_sch,d_sch_count);
break;
case DUMMY:
fprintf(stderr,"[DUMMY] cor:%.2f",d_corr_max);
break;
case ACCESS:
fprintf(stderr,"[ACCESS]"); //We don't detect this yet
break;
case NORMAL:
fprintf(stderr,"[NORM] clr:%d cor:%.2f",d_color_code,d_corr_max);
break;
case UNKNOWN:
fprintf(stderr,"[?]");
break;
default:
fprintf(stderr,"[oops! default]");
break;
}
fprintf(stderr,"\n");
//print the correlation pattern for visual inspection
if ( (UNKNOWN != d_burst_type) &&
(d_sync_state > WAIT_SCH_ALIGN) &&
(d_print_options & PRINT_CORR_BITS) )
{
int pat_indent;
if (d_print_options & PRINT_ALL_BITS)
pat_indent = d_corr_center + d_corr_maxpos;
else
pat_indent = d_corr_center - MAX_CORR_DIST; //useful bits will already be offset
for (int i = 0; i < pat_indent; i++)
fprintf(stderr," ");
fprintf(stderr," "); //extra space for skipped bit
print_bits(d_corr_pattern+1,d_corr_pat_size-1); //skip first bit (diff encoding)
fprintf(stderr,"\t\toffset:%d, max: %.2f \n",d_corr_maxpos,d_corr_max);
}
}
//Print Burst data in hex
if ( d_print_options & PRINT_HEX ) {
fprintf(stdout,"%d,%d,",d_ts,d_burst_type);
diff_decode_burst();
print_hex(d_decoded_burst,USEFUL_BITS);
fprintf(stdout,"\n");
}
//Print State related messages
if ( d_print_options & PRINT_STATE ) {
if ( (SYNCHRONIZED == d_sync_state) && (SYNCHRONIZED != d_last_sync_state) ) {
fprintf(stderr,"====== SYNC GAINED (FOff: %g Corr: %.2f, Color: %d ) ======\n",d_freq_offset,d_corr_max,d_color_code);
}
else if ( (SYNCHRONIZED != d_sync_state) && (SYNCHRONIZED == d_last_sync_state) ) {
fprintf(stderr,"====== SYNC LOST (%ld) ======\n",d_sync_loss_count);
}
}
}
void gsm_burst::shift_burst(int shift_bits)
{
//fprintf(stderr,"sft:%d\n",shift_bits);
assert(shift_bits >= 0);
assert(shift_bits < BBUF_SIZE );
float *p_src = d_burst_buffer + shift_bits;
float *p_dst = d_burst_buffer;
int num = BBUF_SIZE - shift_bits;
memmove(p_dst,p_src,num * sizeof(float)); //need memmove because of overlap
//adjust the buffer positions
d_bbuf_pos -= shift_bits;
assert(d_bbuf_pos >= 0);
}
//Calculate frequency offset of an FCCH burst from the mean phase difference
//FCCH should be a constant frequency and equivalently a constant phase
//increment (pi/2) per sample. Calculate the frequency offset by the difference
//of the mean phase from pi/2.
void gsm_burst::calc_freq_offset(void)
{
const int padding = 20;
int start = d_burst_start + padding;
int end = d_burst_start + USEFUL_BITS - padding;
float sum = 0.0;
for (int j = start; j <= end; j++) {
sum += d_burst_buffer[j];
}
float mean = sum / ((float)USEFUL_BITS - (2.0 * (float)padding) );
float p_off = mean - (M_PI / 2);
d_freq_offset = p_off * 1625000.0 / (12.0 * M_PI);
//maintain a 100 weight mean
if (d_freq_off_weight < 100)
d_freq_off_weight++;
else
d_freq_off_sum *= 99.0/100.0;
d_freq_off_sum += d_freq_offset;
}
// This will look for a series of positive phase differences comprising
// a FCCH burst. When we find one, we calculate the frequency offset and
// adjust the burst timing so that it will be at least coarsely aligned
// for SCH detection.
//
// TODO: Adjust start pos on long hits
// very large hit counts may indicate an unmodulated carrier.
BURST_TYPE gsm_burst::get_fcch_burst(void)
{
int hit_count = 0;
int miss_count = 0;
int start_pos = -1;
for (int i=0; i < BBUF_SIZE; i++) {
if (d_burst_buffer[i] > 0) {
if ( ! hit_count++ )
start_pos = i;
}
else {
if (hit_count >= FCCH_HITS_NEEDED) {
break;
}
else if ( ++miss_count > FCCH_MAX_MISSES ) {
start_pos = -1;
hit_count = miss_count = 0;
}
}
}
//Do we have a match?
if ( start_pos >= 0 ) {
//Is it within range? (we know it's long enough then too)
if ( start_pos < 2*MAX_CORR_DIST ) {
d_burst_start = start_pos;
d_bbuf_pos = 0; //load buffer from start
return FCCH;
}
else {
//TODO: don't shift a tiny amount
shift_burst(start_pos - MAX_CORR_DIST);
}
}
else {
//Didn't find anything
d_burst_start = MAX_CORR_DIST;
d_bbuf_pos = 0; //load buffer from start
}
return UNKNOWN;
}
void gsm_burst::equalize(void)
{
float last = 0.0;
switch ( d_equalizer_type ) {
case EQ_FIXED_LINEAR:
//TODO: should filter w/ inverse freq response
//this is just for giggles
for (int i = 1; i < BBUF_SIZE - 1; i++) {
d_burst_buffer[i] = - 0.4 * d_burst_buffer[i-1] + 1.1 * d_burst_buffer[i] - 0.4 * d_burst_buffer[i+1];
}
break;
case EQ_FIXED_DFE:
//TODO: allow coefficients to be options?
for (int i = 0; i < BBUF_SIZE; i++) {
d_burst_buffer[i] -= 0.4 * last;
d_burst_buffer[i] > 0.0 ? last = M_PI/2 : last = -M_PI/2;
}
break;
default:
fprintf(stderr,"!EQ");
case EQ_NONE:
break;
}
}
//TODO: optimize by working incrementally out from center and returning when a provided threshold is reached
float gsm_burst::correlate_pattern(const float *pattern,const int pat_size,const int center,const int distance)
{
float corr;
//need to save these for later printing, etc
//TODO: not much need for function params when we have the member vars
d_corr_pattern = pattern;
d_corr_pat_size = pat_size;
d_corr_max = 0.0;
d_corr_maxpos = 0;
d_corr_center = center;
for (int j=-distance;j<=distance;j++) {
corr = 0.0;
for (int i = 1; i < pat_size; i++) { //Start a 1 to skip first bit due to diff encoding
//d_corr[j+distance] += d_burst_buffer[center+i+j] * pattern[i];
//corr += SIGNUM(d_burst_buffer[center+i+j]) * pattern[i]; //binary corr/sliced
corr += d_burst_buffer[center+i+j] * pattern[i];
}
corr /= pat_size - 1; //normalize, -1 for skipped first bit
if (corr > d_corr_max) {
d_corr_max = corr;
d_corr_maxpos = j;
}
}
return d_corr_max;
}
BURST_TYPE gsm_burst::get_sch_burst(void)
{
BURST_TYPE type = UNKNOWN;
int tpos = 0; //default d_bbuf_pos
equalize();
// if (!d_ts) { // wait for TS0
//correlate over a range to detect and align on the sync pattern
correlate_pattern(corr_sync,N_SYNC_BITS,MAX_CORR_DIST+SYNC_POS,20);
if (d_corr_max > SCH_CORR_THRESHOLD) {
d_burst_start += d_corr_maxpos;
//It's possible that we will corelate far enough out that some burst data will be lost.
// In this case we should be in aligned state, and wait until next SCH to decode it
if (d_burst_start < 0) {
//We've missed the beginning of the data, wait for the next SCH
//TODO: verify timing in this case
type = PARTIAL_SCH;
} else if (d_burst_start > 2 * MAX_CORR_DIST) {
//The rest of our data is still coming, get it...
shift_burst(d_burst_start - MAX_CORR_DIST);
d_burst_start = MAX_CORR_DIST;
tpos = d_bbuf_pos;
} else {
type = SCH;
}
}
else {
d_burst_start = MAX_CORR_DIST;
}
// } else {
// d_burst_start = MAX_CORR_DIST;
// }
d_bbuf_pos = tpos;
return type;
}
BURST_TYPE gsm_burst::get_norm_burst(void)
{
int eq = 0;
BURST_TYPE type = UNKNOWN;
if (!d_ts) {
// Don't equalize before checking FCCH
if ( FCCH_CORR_THRESHOLD < correlate_pattern(corr_train_seq[TS_FCCH],N_TRAIN_BITS,MAX_CORR_DIST+TRAIN_POS,0) ) {
type = FCCH;
d_burst_start = MAX_CORR_DIST;
d_corr_maxpos = 0; //we don't want to affect timing
}
else {
equalize();
eq=1;
//TODO: check CTS & COMPACT SYNC
if (SCH_CORR_THRESHOLD < correlate_pattern(corr_sync,N_SYNC_BITS,MAX_CORR_DIST+SYNC_POS,MAX_CORR_DIST) )
type = SCH;
}
}
if (UNKNOWN == type) { //no matches yet
if (!eq) equalize();
//Match dummy sequence
if ( NORM_CORR_THRESHOLD < correlate_pattern(corr_train_seq[TS_DUMMY],N_TRAIN_BITS,MAX_CORR_DIST+TRAIN_POS,MAX_CORR_DIST) ) {
type = DUMMY;
}
else {
//Match normal training sequences
//TODO: start with current color code
for (int i=0; i < 8; i++) {
if ( NORM_CORR_THRESHOLD < correlate_pattern(corr_train_seq[i],N_TRAIN_BITS,MAX_CORR_DIST+TRAIN_POS,MAX_CORR_DIST) ) {
type = NORMAL;
d_color_code = i;
break;
}
}
}
}
if ( UNKNOWN == type ) {
d_burst_start = MAX_CORR_DIST;
} else {
d_burst_start += d_corr_maxpos;
}
return type;
}
int gsm_burst::get_burst(void)
{
//TODO: should we output data while looking for FCCH? Maybe an option.
int got_burst=1; //except for the WAIT_FCCH case we always have output
d_burst_type = UNKNOWN; //default
//begin with the assumption the the burst will be in the correct position
d_burst_start = MAX_CORR_DIST;
//process the burst
switch (d_sync_state) {
case WAIT_FCCH:
d_ts = 0;
if ( FCCH == ( d_burst_type = get_fcch_burst()) ) {
d_sync_state = WAIT_SCH_ALIGN;
d_bbuf_pos = 0; //load buffer from start
}
else {
got_burst = 0;
}
break;
case WAIT_SCH_ALIGN:
d_burst_type = get_sch_burst();
switch ( d_burst_type ) {
case PARTIAL_SCH:
d_sync_state = WAIT_SCH;
break;
//case SCH:
//let the burst type switch handle this so it knows if new or old sync
// d_sync_state = SYNCHRONIZED;
break;
default:
break;
}
break;
case WAIT_SCH: //TODO: check this case
case SYNCHRONIZED:
d_burst_type = get_norm_burst();
d_bbuf_pos = 0; //load buffer from start
break;
}
//Update stats
switch (d_burst_type) {
case FCCH:
if (SYNCHRONIZED == d_sync_state)
d_burst_count++;
else
d_burst_count = 0;
d_fcch_count++;
calc_freq_offset();
d_ts = 0;
break;
case PARTIAL_SCH:
d_burst_count++;
d_part_sch_count++;
d_last_sch = d_burst_count;
d_ts = 0; //TODO: check this
break;
case SCH:
//TODO: it would be better to adjust tuning on first FCCH (for better SCH detection),
// but tuning can run away with false FCCHs
// Some logic to retune back to original offset on false FCCH might work
if (p_tuner) {
if (SYNCHRONIZED == d_sync_state)
p_tuner->calleval(BURST_CB_ADJ_OFFSET);
else
p_tuner->calleval(BURST_CB_SYNC_OFFSET);
}
d_burst_count++;
d_sch_count++;
d_last_sch = d_burst_count;
d_sync_state = SYNCHRONIZED; //handle WAIT_SCH
d_ts = 0;
break;
case NORMAL:
d_burst_count++;
d_normal_count++;
break;
case DUMMY:
d_burst_count++;
d_dummy_count++;
break;
default:
case UNKNOWN:
if (SYNCHRONIZED == d_sync_state) {
d_burst_count++;
d_unknown_count++;
}
break;
}
if (UNKNOWN != d_burst_type) {
d_last_good = d_burst_count;
}
//Check for loss of sync
int bursts_since_good = d_burst_count - d_last_good;
if (bursts_since_good > MAX_SYNC_WAIT) {
d_sync_loss_count++;
sync_reset();
}
if (got_burst) {
d_total_count++;
//print info
print_burst();
/////////////////////
//start tune testing
#ifdef TEST_HOP_SPEED
static int good_count = -1; //-1: wait sch, >=0: got sch, counting
static int wait_count = 0;
if (OPT_TEST_HOP_SPEED & d_test_options ) {
//have we started counting?
if ( good_count >= 0 ) {
if (UNKNOWN == d_burst_type) {
if (good_count >= 0) {
fprintf(stdout,"good_count: %d\n",good_count);
if (p_tuner) {
next_arfcn = d_hop_good_arfcn;
p_tuner->calleval(BURST_CB_TUNE);
}
}
good_count = -1; // start again at resync
} else {
//count good bursts
good_count++;
}
} else {
//haven't started counting
// get some good syncs before trying again
if ((SCH == d_burst_type) && (++wait_count > 5)) {
//fprintf(stdout,"restarting good_count\n");
good_count = wait_count = 0;
//tune away
if (p_tuner) {
next_arfcn = d_hop_bad_arfcn;
p_tuner->calleval(BURST_CB_TUNE);
}
}
}
}
#endif
//end tune testing
/////////////////////
//Adjust the buffer write position to align on MAX_CORR_DIST
if ( d_clock_options & CLK_CORR_TRACK )
d_bbuf_pos += MAX_CORR_DIST - d_burst_start;
}
d_last_sync_state = d_sync_state;
d_ts = (++d_ts)%8; //next TS
return got_burst;
}
|