1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
/* -*- c++ -*- */
/*
* Copyright 2005 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "fire_crc.h"
#include <math.h>
#include <iostream>
fire_crc::fire_crc (unsigned int crc_size, unsigned int data_size)
: d_crc_size(crc_size),
d_data_size(data_size),
d_syn_start(0),
d_syndrome_reg()
{
// Initialise syndrome
}
fire_crc::~fire_crc()
{
}
int
fire_crc::rem(const int x, const int y)
{
return (x % y);
}
int
fire_crc::check_crc(const unsigned char *input_bits,
unsigned char *control_data)
{
int j,error_count = 0, error_index = 0, success_flag = 0, syn_index = 0;
d_syn_start = 0;
// reset the syndrome register
d_syndrome_reg.clear();
d_syndrome_reg.insert(d_syndrome_reg.begin(),40,0);
// shift in the data bits
for (unsigned int i=0; i < d_data_size; i++) {
error_count = syndrome_shift(input_bits[i]);
control_data[i] = input_bits[i];
}
// shift in the crc bits
for (unsigned int i=0; i < d_crc_size; i++) {
error_count = syndrome_shift(1-input_bits[i+d_data_size]);
}
// Find position of error burst
if (error_count == 0) {
error_index = 0;
}
else {
error_index = 1;
error_count = syndrome_shift(0);
error_index += 1;
while (error_index < (d_data_size + d_crc_size) ) {
error_count = syndrome_shift(0);
error_index += 1;
if ( error_count == 0 ) break;
}
}
// Test for correctable errors
//printf("error_index %d\n",error_index);
if (error_index == 224) success_flag = 0;
else {
// correct index depending on the position of the error
if (error_index == 0) syn_index = error_index;
else syn_index = error_index - 1;
// error burst lies within data bits
if (error_index < 184) {
//printf("error < bit 184,%d\n",error_index);
j = error_index;
while ( j < (error_index+12) ) {
if (j < 184) {
control_data[j] = control_data[j] ^
d_syndrome_reg[rem(d_syn_start+39-j+syn_index,40)];
}
else break;
j = j + 1;
}
}
else if ( error_index > 212 ) {
//printf("error > bit 212,%d\n",error_index);
j = 0;
while ( j < (error_index - 212) ) {
control_data[j] = control_data[j] ^
d_syndrome_reg[rem(d_syn_start+39-j-224+syn_index,40)];
j = j + 1;
}
}
// for 183 < error_index < 213 error in parity alone so ignore
success_flag = 1;
}
return success_flag;
}
int
fire_crc::syndrome_shift(unsigned int bit)
{
int error_count = 0;
if (d_syn_start == 0) d_syn_start = 39;
else d_syn_start -= 1;
std::vector<int> temp_syndrome_reg = d_syndrome_reg;
temp_syndrome_reg[rem(d_syn_start+3,40)] =
d_syndrome_reg[rem(d_syn_start+3,40)] ^
d_syndrome_reg[d_syn_start];
temp_syndrome_reg[rem(d_syn_start+17,40)] =
d_syndrome_reg[rem(d_syn_start+17,40)] ^
d_syndrome_reg[d_syn_start];
temp_syndrome_reg[rem(d_syn_start+23,40)] =
d_syndrome_reg[rem(d_syn_start+23,40)] ^
d_syndrome_reg[d_syn_start];
temp_syndrome_reg[rem(d_syn_start+26,40)] =
d_syndrome_reg[rem(d_syn_start+26,40)] ^
d_syndrome_reg[d_syn_start];
temp_syndrome_reg[rem(d_syn_start+4,40)] =
d_syndrome_reg[rem(d_syn_start+4,40)] ^ bit;
temp_syndrome_reg[rem(d_syn_start+6,40)] =
d_syndrome_reg[rem(d_syn_start+6,40)] ^ bit;
temp_syndrome_reg[rem(d_syn_start+10,40)] =
d_syndrome_reg[rem(d_syn_start+10,40)] ^ bit;
temp_syndrome_reg[rem(d_syn_start+16,40)] =
d_syndrome_reg[rem(d_syn_start+16,40)] ^ bit;
temp_syndrome_reg[rem(d_syn_start+27,40)] =
d_syndrome_reg[rem(d_syn_start+27,40)] ^ bit;
temp_syndrome_reg[rem(d_syn_start+29,40)] =
d_syndrome_reg[rem(d_syn_start+29,40)] ^ bit;
temp_syndrome_reg[rem(d_syn_start+33,40)] =
d_syndrome_reg[rem(d_syn_start+33,40)] ^ bit;
temp_syndrome_reg[rem(d_syn_start+39,40)] =
d_syndrome_reg[rem(d_syn_start+39,40)] ^ bit;
temp_syndrome_reg[d_syn_start] = d_syndrome_reg[d_syn_start] ^ bit;
d_syndrome_reg = temp_syndrome_reg;
for (unsigned int i = 0; i < 28; i++) {
error_count = error_count + d_syndrome_reg[rem(d_syn_start+i,40)];
}
return error_count;
}
|