1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
/* This file was taken from gsm-tvoid */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
//#include "burst_types.h"
#include "conv.h"
//#include "fire_crc.h"
/*
* Convolutional encoding and Viterbi decoding for the GSM CCH+TCH channel.
*/
/* The class 1 bits are encoded with the 1/2 rate convolutional code defined by
* the polynomials:
* G0 = 1 + D3+ D4
* G1 = 1 + D + D3+ D4
* The coded bits {c(0), c(1),..., c(455)} are then defined by:
* class 1: c(2k) = u(k) + u(k-3) + u(k-4)
* c(2k+1) = u(k) + u(k-1) + u(k-3) + u(k-4) for k = 0,1,...,188
* u(k) = 0 for k < 0
* class 2:c(378+k) = d(182+k) for k = 0,1,....,77
*/
/*
* Convolutional encoding:
*
* G_0 = 1 + x^3 + x^4
* G_1 = 1 + x + x^3 + x^4
*
* i.e.,
*
* c_{2k} = u_k + u_{k - 3} + u_{k - 4}
* c_{2k + 1} = u_k + u_{k - 1} + u_{k - 3} + u_{k - 4}
*/
#define K 5
#define MAX_ERROR(size) (2 * size + 1)
/*
* Given the current state and input bit, what are the output bits?
*
* encode[current_state][input_bit]
*/
static const unsigned int encode[1 << (K - 1)][2] = {
{0, 3}, {3, 0}, {3, 0}, {0, 3},
{0, 3}, {3, 0}, {3, 0}, {0, 3},
{1, 2}, {2, 1}, {2, 1}, {1, 2},
{1, 2}, {2, 1}, {2, 1}, {1, 2}
};
/*
* Given the current state and input bit, what is the next state?
*
* next_state[current_state][input_bit]
*/
static const unsigned int next_state[1 << (K - 1)][2] = {
{0, 8}, {0, 8}, {1, 9}, {1, 9},
{2, 10}, {2, 10}, {3, 11}, {3, 11},
{4, 12}, {4, 12}, {5, 13}, {5, 13},
{6, 14}, {6, 14}, {7, 15}, {7, 15}
};
/*
* Given the previous state and the current state, what input bit caused
* the transition? If it is impossible to transition between the two
* states, the value is 2.
*
* prev_next_state[previous_state][current_state]
*/
static const unsigned int prev_next_state[1 << (K - 1)][1 << (K - 1)] = {
{ 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2},
{ 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2},
{ 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2},
{ 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2},
{ 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2},
{ 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2},
{ 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2},
{ 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2},
{ 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2},
{ 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2},
{ 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2},
{ 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2},
{ 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2},
{ 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2},
{ 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1},
{ 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1}
};
static inline unsigned int hamming_distance2(unsigned int w) {
return (w & 1) + !!(w & 2);
}
/*
static void conv_encode(unsigned char *data, unsigned char *output,
unsigned int input_size) {
unsigned int i, state = 0, o;
// encode data
for(i = 0; i < input_size; i++) {
o = encode[state][data[i]];
state = next_state[state][data[i]];
*output++ = !!(o & 2);
*output++ = o & 1;
}
}
*/
int
conv_decode(unsigned char *output, unsigned char *data,
unsigned int input_size) {
int i, t;
unsigned int rdata, state, nstate, b, o, distance, accumulated_error,
min_state, min_error, cur_state;
unsigned int max_error = MAX_ERROR(input_size);
unsigned int ae[1 << (K - 1)];
unsigned int nae[1 << (K - 1)]; // next accumulated error
unsigned int state_history[1 << (K - 1)][CONV_MAX_INPUT_SIZE + 1];
// initialize accumulated error, assume starting state is 0
for(i = 0; i < (1 << (K - 1)); i++)
ae[i] = nae[i] = max_error;
ae[0] = 0;
// build trellis
for(t = 0; t < input_size; t++) {
// get received data symbol
rdata = (data[2 * t] << 1) | data[2 * t + 1];
// for each state
for(state = 0; state < (1 << (K - 1)); state++) {
// make sure this state is possible
if(ae[state] >= max_error)
continue;
// find all states we lead to
for(b = 0; b < 2; b++) {
// get next state given input bit b
nstate = next_state[state][b];
// find output for this transition
o = encode[state][b];
// calculate distance from received data
distance = hamming_distance2(rdata ^ o);
// choose surviving path
accumulated_error = ae[state] + distance;
if(accumulated_error < nae[nstate]) {
// save error for surviving state
nae[nstate] = accumulated_error;
// update state history
state_history[nstate][t + 1] = state;
}
}
}
// get accumulated error ready for next time slice
for(i = 0; i < (1 << (K - 1)); i++) {
ae[i] = nae[i];
nae[i] = max_error;
}
}
// the final state is the state with the fewest errors
min_state = (unsigned int)-1;
min_error = max_error;
for(i = 0; i < (1 << (K - 1)); i++) {
if(ae[i] < min_error) {
min_state = i;
min_error = ae[i];
}
}
// trace the path
cur_state = min_state;
for(t = input_size; t >= 1; t--) {
min_state = cur_state;
cur_state = state_history[cur_state][t]; // get previous
output[t - 1] = prev_next_state[cur_state][min_state];
}
// return the number of errors detected (hard-decision)
return min_error;
}
|