1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
// $Id: bursts.cc,v 1.1.1.1 2007-06-01 04:26:57 jl Exp $
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include "burst_types.h"
void display_burst_type(burst_t t) {
switch(t) {
case burst_n_0:
case burst_n_1:
case burst_n_2:
case burst_n_3:
case burst_n_4:
case burst_n_5:
case burst_n_6:
case burst_n_7:
printf("normal burst %d", t);
break;
case burst_fc:
printf("frequency correction burst");
break;
case burst_fc_c:
printf("frequency correction burst (COMPACT)");
break;
case burst_s:
printf("synchronization burst");
break;
case burst_s_cts:
printf("synchronization burst (CTS)");
break;
case burst_s_c:
printf("synchronization burst (COMPACT)");
break;
case burst_d:
printf("dummy burst");
break;
case burst_a:
printf("access burst");
break;
case burst_a_ts1:
printf("access burst (TS1)");
break;
case burst_a_ts2:
printf("access burst (TS2)");
break;
default:
printf("unknown burst type");
break;
}
}
static int burst_diff(const unsigned char *b1, const unsigned char *b2,
unsigned int l) {
int d = 0;
unsigned int i;
for(i = 0; i < l; i++)
d += (b1[i] ^ b2[i]);
return d;
}
int search_fc(unsigned char *buf) {
return !(burst_diff(buf + TB_OS1, tail_bits, TB_LEN) +
burst_diff(buf + TB_OS2, tail_bits, TB_LEN) +
burst_diff(buf + FC_OS, fc_fb, FC_CODE_LEN));
}
int is_dummy_burst(const unsigned char *buf) {
int i;
for(i = 0; i < D_CODE_LEN; i++)
if(buf[i + D_MB_OS] != d_mb[i])
return 0;
return 1;
}
burst_t search_burst(unsigned char *buf, int max_burst_errors, int *rmin_o) {
int i, d_burst[N_BURST_TYPES], t_d, d_min, rmin;
burst_t bt_min;
for(i = 0; i < N_BURST_TYPES; i++)
d_burst[i] = max_burst_errors + 1;
// access burst (uplink only)
t_d = burst_diff(buf + AB_ETB_OS, ab_etb, AB_ETB_CODE_LEN);
d_burst[(int)burst_a] =
t_d + burst_diff(buf + AB_SSB_OS, ab_ssb, AB_SSB_CODE_LEN);
d_burst[(int)burst_a_ts1] =
t_d + burst_diff(buf + AB_SSB_OS, ab_ts1_ssb, AB_SSB_CODE_LEN);
d_burst[(int)burst_a_ts2] =
t_d + burst_diff(buf + AB_SSB_OS, ab_ts2_ssb, AB_SSB_CODE_LEN);
// check tail bits
t_d =
burst_diff(buf + TB_OS1, tail_bits, TB_LEN) +
burst_diff(buf + TB_OS2, tail_bits, TB_LEN);
// normal bursts
for(i = 0; i < N_TSC_NUM; i++)
d_burst[(int)burst_n_0 + i] =
t_d + burst_diff(buf + N_TSC_OS, n_tsc[i], N_TSC_CODE_LEN);
// frequency correction
d_burst[(int)burst_fc] =
t_d + burst_diff(buf + FC_OS, fc_fb, FC_CODE_LEN);
d_burst[(int)burst_fc_c] =
t_d + burst_diff(buf + FC_OS, fc_compact_fb, FC_CODE_LEN);
// synchronization burst
d_burst[(int)burst_s] =
t_d + burst_diff(buf + SB_ETS_OS, sb_etsc, SB_CODE_LEN);
d_burst[(int)burst_s_cts] =
t_d + burst_diff(buf + SB_ETS_OS, sb_cts_etsc, SB_CODE_LEN);
d_burst[(int)burst_s_c] =
t_d + burst_diff(buf + SB_ETS_OS, sb_compact_etsc, SB_CODE_LEN);
// dummy
d_burst[(int)burst_d] =
t_d + burst_diff(buf + D_MB_OS, d_mb, D_CODE_LEN);
d_burst[(int)burst_not_a_burst] = max_burst_errors;
rmin = BURST_LENGTH;
d_min = max_burst_errors + 1;
bt_min = burst_not_a_burst;
for(i = 0; i < N_BURST_TYPES; i++) {
if(d_burst[i] < d_min) {
bt_min = (burst_t)i;
d_min = d_burst[i];
}
if((d_burst[i] < rmin) && ((burst_t)i != burst_not_a_burst))
rmin = d_burst[i];
}
if(rmin_o)
*rmin_o = rmin;
return bt_min;
}
|