1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
// $Id: sch.cc,v 1.1.1.1 2007-06-01 04:26:57 jl Exp $
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include "burst_types.h"
/*
* Synchronization channel.
*
* Timeslot Repeat length Frame Number (mod repeat length)
* 0 51 1, 11, 21, 31, 41
*/
/*
* Parity (FIRE) for the GSM SCH.
*
* g(x) = x^10 + x^8 + x^6 + x^5 + x^4 + x^2 + 1
*/
#define DATA_BLOCK_SIZE 25
#define PARITY_SIZE 10
#define TAIL_BITS_SIZE 4
#define PARITY_OUTPUT_SIZE (DATA_BLOCK_SIZE + PARITY_SIZE + TAIL_BITS_SIZE)
static const unsigned char parity_polynomial[PARITY_SIZE + 1] = {
1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1
};
static const unsigned char parity_remainder[PARITY_SIZE] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
static void parity_encode(unsigned char *d, unsigned char *p) {
unsigned int i;
unsigned char buf[DATA_BLOCK_SIZE + PARITY_SIZE], *q;
memcpy(buf, d, DATA_BLOCK_SIZE);
memset(buf + DATA_BLOCK_SIZE, 0, PARITY_SIZE);
for(q = buf; q < buf + DATA_BLOCK_SIZE; q++)
if(*q)
for(i = 0; i < PARITY_SIZE + 1; i++)
q[i] ^= parity_polynomial[i];
for(i = 0; i < PARITY_SIZE; i++)
p[i] = !buf[DATA_BLOCK_SIZE + i];
}
static int parity_check(unsigned char *d) {
unsigned int i;
unsigned char buf[DATA_BLOCK_SIZE + PARITY_SIZE], *q;
memcpy(buf, d, DATA_BLOCK_SIZE + PARITY_SIZE);
for(q = buf; q < buf + DATA_BLOCK_SIZE; q++)
if(*q)
for(i = 0; i < PARITY_SIZE + 1; i++)
q[i] ^= parity_polynomial[i];
return memcmp(buf + DATA_BLOCK_SIZE, parity_remainder, PARITY_SIZE);
}
/*
* Convolutional encoding and Viterbi decoding for the GSM SCH.
* (Equivalent to the GSM SACCH.)
*
* G_0 = 1 + x^3 + x^4
* G_1 = 1 + x + x^3 + x^4
*
* i.e.,
*
* c_{2k} = u_k + u_{k - 3} + u_{k - 4}
* c_{2k + 1} = u_k + u_{k - 1} + u_{k - 3} + u_{k - 4}
*/
#define CONV_INPUT_SIZE PARITY_OUTPUT_SIZE
#define CONV_SIZE (2 * CONV_INPUT_SIZE)
#define K 5
#define MAX_ERROR (2 * CONV_INPUT_SIZE + 1)
/*
* Given the current state and input bit, what are the output bits?
*
* encode[current_state][input_bit]
*/
static const unsigned int encode[1 << (K - 1)][2] = {
{0, 3}, {3, 0}, {3, 0}, {0, 3},
{0, 3}, {3, 0}, {3, 0}, {0, 3},
{1, 2}, {2, 1}, {2, 1}, {1, 2},
{1, 2}, {2, 1}, {2, 1}, {1, 2}
};
/*
* Given the current state and input bit, what is the next state?
*
* next_state[current_state][input_bit]
*/
static const unsigned int next_state[1 << (K - 1)][2] = {
{0, 8}, {0, 8}, {1, 9}, {1, 9},
{2, 10}, {2, 10}, {3, 11}, {3, 11},
{4, 12}, {4, 12}, {5, 13}, {5, 13},
{6, 14}, {6, 14}, {7, 15}, {7, 15}
};
/*
* Given the previous state and the current state, what input bit caused
* the transition? If it is impossible to transition between the two
* states, the value is 2.
*
* prev_next_state[previous_state][current_state]
*/
static const unsigned int prev_next_state[1 << (K - 1)][1 << (K - 1)] = {
{ 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2},
{ 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2},
{ 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2},
{ 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2},
{ 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2},
{ 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2},
{ 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2},
{ 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2},
{ 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2},
{ 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2},
{ 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2},
{ 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2},
{ 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2},
{ 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2},
{ 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1},
{ 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 1}
};
static inline unsigned int hamming_distance2(unsigned int w) {
return (w & 1) + !!(w & 2);
}
static void conv_encode(unsigned char *data, unsigned char *output) {
unsigned int i, state = 0, o;
// encode data
for(i = 0; i < CONV_INPUT_SIZE; i++) {
o = encode[state][data[i]];
state = next_state[state][data[i]];
*output++ = !!(o & 2);
*output++ = o & 1;
}
}
static int conv_decode(unsigned char *data, unsigned char *output) {
int i, t;
unsigned int rdata, state, nstate, b, o, distance, accumulated_error,
min_state, min_error, cur_state;
unsigned int ae[1 << (K - 1)];
unsigned int nae[1 << (K - 1)]; // next accumulated error
unsigned int state_history[1 << (K - 1)][CONV_INPUT_SIZE + 1];
// initialize accumulated error, assume starting state is 0
for(i = 0; i < (1 << (K - 1)); i++)
ae[i] = nae[i] = MAX_ERROR;
ae[0] = 0;
// build trellis
for(t = 0; t < CONV_INPUT_SIZE; t++) {
// get received data symbol
rdata = (data[2 * t] << 1) | data[2 * t + 1];
// for each state
for(state = 0; state < (1 << (K - 1)); state++) {
// make sure this state is possible
if(ae[state] >= MAX_ERROR)
continue;
// find all states we lead to
for(b = 0; b < 2; b++) {
// get next state given input bit b
nstate = next_state[state][b];
// find output for this transition
o = encode[state][b];
// calculate distance from received data
distance = hamming_distance2(rdata ^ o);
// choose surviving path
accumulated_error = ae[state] + distance;
if(accumulated_error < nae[nstate]) {
// save error for surviving state
nae[nstate] = accumulated_error;
// update state history
state_history[nstate][t + 1] = state;
}
}
}
// get accumulated error ready for next time slice
for(i = 0; i < (1 << (K - 1)); i++) {
ae[i] = nae[i];
nae[i] = MAX_ERROR;
}
}
// the final state is the state with the fewest errors
min_state = (unsigned int)-1;
min_error = MAX_ERROR;
for(i = 0; i < (1 << (K - 1)); i++) {
if(ae[i] < min_error) {
min_state = i;
min_error = ae[i];
}
}
// trace the path
cur_state = min_state;
for(t = CONV_INPUT_SIZE; t >= 1; t--) {
min_state = cur_state;
cur_state = state_history[cur_state][t]; // get previous
output[t - 1] = prev_next_state[cur_state][min_state];
}
// return the number of errors detected (hard-decision)
return min_error;
}
int decode_sch(const unsigned char *buf, int *fn_o, int *bsic_o) {
int errors, bsic, t1, t2, t3p, t3, fn, tt;
unsigned char data[CONV_SIZE], decoded_data[PARITY_OUTPUT_SIZE];
// extract encoded data from synchronization burst
memcpy(data, buf + SB_EDATA_OS_1, SB_EDATA_LEN_1);
memcpy(data + SB_EDATA_LEN_1, buf + SB_EDATA_OS_2, SB_EDATA_LEN_2);
// Viterbi decode
if(errors = conv_decode(data, decoded_data)) {
// fprintf(stderr, "error: sch: conv_decode (%d)\n", errors);
return errors;
}
// check parity
if(parity_check(decoded_data)) {
// fprintf(stderr, "error: sch: parity failed\n");
return 1;
}
// Synchronization channel information, 44.018 page 171. (V7.2.0)
bsic =
(decoded_data[ 7] << 5) |
(decoded_data[ 6] << 4) |
(decoded_data[ 5] << 3) |
(decoded_data[ 4] << 2) |
(decoded_data[ 3] << 1) |
(decoded_data[ 2] << 0);
t1 =
(decoded_data[ 1] << 10) |
(decoded_data[ 0] << 9) |
(decoded_data[15] << 8) |
(decoded_data[14] << 7) |
(decoded_data[13] << 6) |
(decoded_data[12] << 5) |
(decoded_data[11] << 4) |
(decoded_data[10] << 3) |
(decoded_data[ 9] << 2) |
(decoded_data[ 8] << 1) |
(decoded_data[23] << 0);
t2 =
(decoded_data[22] << 4) |
(decoded_data[21] << 3) |
(decoded_data[20] << 2) |
(decoded_data[19] << 1) |
(decoded_data[18] << 0);
t3p =
(decoded_data[17] << 2) |
(decoded_data[16] << 1) |
(decoded_data[24] << 0);
t3 = 10 * t3p + 1;
// modulo arithmetic
tt = t3;
while(tt < t2)
tt += 26;
tt = (tt - t2) % 26;
fn = (51 * 26 * t1) + (51 * tt) + t3;
/*
* BSIC: Base Station Identification Code
* BCC: Base station Color Code
* NCC: Network Color Code
*
* FN: Frame Number
*/
/*
printf("bsic: %x (bcc: %u; ncc: %u)\tFN: %u\n", bsic, bsic & 7,
(bsic >> 3) & 7, fn);
*/
if(fn_o)
*fn_o = fn;
if(bsic_o)
*bsic_o = bsic;
return 0;
}
|