summaryrefslogtreecommitdiff
path: root/src/lib/gsm_receiver_cf.cc
blob: 7f91fa8281b1b490031a7812366d39a7f115b09e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/* -*- c++ -*- */
/*
 * @file
 * @author Piotr Krysik <pkrysik@stud.elka.pw.edu.pl>
 * @section LICENSE
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gr_io_signature.h>
#include <gr_math.h>
#include <math.h>
#include <Assert.h>
#include <list>
#include <boost/circular_buffer.hpp>
#include <algorithm>
#include <gsm_receiver_cf.h>
#include <viterbi_detector.h>
#include <sch.h>

#define SYNC_SEARCH_RANGE 30
#define TRAIN_SEARCH_RANGE 40

//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
void gsm_receiver_cf::process_normal_burst(burst_counter burst_nr, const unsigned char * burst_binary)
{
  if (burst_nr.get_timeslot_nr() == 0) {
//     printf("burst = [ ");
//     for (int i = 0; i < BURST_SIZE ; i++) {
//       printf(" %d", burst_binary[i]);
//     }
//     printf("];\n");
//     std::cout  << " t2: " << burst_nr.get_t2() << "\n";
    GS_process(&d_gs_ctx, TIMESLOT0, 6, &burst_binary[3], burst_nr.get_frame_nr());
  }
}
//TODO: this shouldn't be here also - the same reason
void gsm_receiver_cf::configure_receiver()
{
  d_channel_conf.set_multiframe_type(TSC0, multiframe_51);
  
  d_channel_conf.set_burst_types(TSC0, TEST_CCH_FRAMES, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), normal_burst);
  d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);
  
//   d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_26);
//   d_channel_conf.set_burst_types(TIMESLOT6, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), normal_burst);
}


typedef std::list<float> list_float;
typedef std::vector<float> vector_float;

typedef boost::circular_buffer<float> circular_buffer_float;

gsm_receiver_cf_sptr
gsm_make_receiver_cf(gr_feval_dd *tuner, int osr)
{
  return gsm_receiver_cf_sptr(new gsm_receiver_cf(tuner, osr));
}

static const int MIN_IN = 1; // mininum number of input streams
static const int MAX_IN = 1; // maximum number of input streams
static const int MIN_OUT = 0; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams

/*
 * The private constructor
 */
gsm_receiver_cf::gsm_receiver_cf(gr_feval_dd *tuner, int osr)
    : gr_block("gsm_receiver",
               gr_make_io_signature(MIN_IN, MAX_IN, sizeof(gr_complex)),
               gr_make_io_signature(MIN_OUT, MAX_OUT, 142 * sizeof(float))),
    d_OSR(osr),
    d_chan_imp_length(CHAN_IMP_RESP_LENGTH),
    d_tuner(tuner),
    d_counter(0),
    d_fcch_start_pos(0),
    d_freq_offset(0),
    d_state(first_fcch_search),
    d_burst_nr(osr)
{
  int i;
  gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0));

  for (i = 0; i < TRAIN_SEQ_NUM; i++) {
    gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], gr_complex(1.0, 0.0));
  }
  
  /* Initialize GSM Stack */
  GS_new(&d_gs_ctx); //TODO: remove it! it'a not right place for a decoder
}

/*
 * Virtual destructor.
 */
gsm_receiver_cf::~gsm_receiver_cf()
{
}

void gsm_receiver_cf::forecast(int noutput_items, gr_vector_int &nitems_items_required)
{
  nitems_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR);
}

int
gsm_receiver_cf::general_work(int noutput_items,
                              gr_vector_int &nitems_items,
                              gr_vector_const_void_star &input_items,
                              gr_vector_void_star &output_items)
{
  const gr_complex *input = (const gr_complex *) input_items[0];
  //float *out = (float *) output_items[0];
  int produced_out = 0;  //how many output elements were produced - this isn't used yet
  //probably the gsm receiver will be changed into sink so this variable won't be necessary

  switch (d_state) {
      //bootstrapping
    case first_fcch_search:
      if (find_fcch_burst(input, nitems_items[0])) { //find frequency correction burst in the input buffer
        set_frequency(d_freq_offset);                //if fcch search is successful set frequency offset
        //produced_out = 0;
        d_state = next_fcch_search;
      } else {
        //produced_out = 0;
        d_state = first_fcch_search;
      }
      break;

    case next_fcch_search: {                         //this state is used because it takes a bunch of buffered samples
        //before previous set_frequqency cause change
        float prev_freq_offset = d_freq_offset;
        if (find_fcch_burst(input, nitems_items[0])) {
          if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET) {
            set_frequency(d_freq_offset);              //call set_frequncy only frequency offset change is greater than some value
          }
          //produced_out = 0;
          d_state = sch_search;
        } else {
          //produced_out = 0;
          d_state = next_fcch_search;
        }
        break;
      }
    case sch_search: {
        vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
        int t1, t2, t3;
        int burst_start = 0;
        unsigned char output_binary[BURST_SIZE];

        if (reach_sch_burst(nitems_items[0])) {                              //wait for a SCH burst
          burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it
          detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection
          if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { //decode SCH burst
            DCOUT("sch burst_start: " << burst_start);
            DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
            d_burst_nr.set(t1, t2, t3, 0);                                  //set counter of bursts value

            //configure the receiver - tell him where to find which burst type
            d_channel_conf.set_multiframe_type(TIMESLOT0, multiframe_51);  //in the timeslot nr.0 bursts changes according to t3 counter
            configure_receiver();//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
            d_channel_conf.set_burst_types(TIMESLOT0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);  //tell where to find fcch bursts
            d_channel_conf.set_burst_types(TIMESLOT0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst);     //sch bursts
            d_channel_conf.set_burst_types(TIMESLOT0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst);//!and maybe normal bursts of the BCCH logical channel
            d_burst_nr++;

            consume_each(burst_start + BURST_SIZE * d_OSR);   //consume samples up to next guard period
            d_state = synchronized;
          } else {
            d_state = next_fcch_search;                       //if there is error in the sch burst go back to fcch search phase
          }
        } else {
          d_state = sch_search;
        }
        break;
      }
      //in this state receiver is synchronized and it processes bursts according to burst type for given burst number
    case synchronized: {
        vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
        int burst_start;
        int offset = 0;
        int to_consume = 0;
        unsigned char output_binary[BURST_SIZE];

        burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number

        switch (b_type) {
          case fcch_burst: {                                                                    //if it's FCCH  burst
              const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
              const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR;
              double freq_offset = compute_freq_offset(input, first_sample, last_sample);       //extract frequency offset from it
              if (abs(freq_offset) > FCCH_MAX_FREQ_OFFSET) {
                d_freq_offset -= freq_offset;                                                   //and adjust frequency if it have changed beyond
                set_frequency(d_freq_offset);                                                   //some limit
                DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n");
              }
            }
            break;
          case sch_burst: {                                                                    //if it's SCH burst
              int t1, t2, t3, d_ncc, d_bcc;
              burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]);                //get channel impulse response
              detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);           //MLSE detection of bits
              if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) {         //and decode SCH data
                // d_burst_nr.set(t1, t2, t3, 0);                                              //but only to check if burst_start value is correct
                DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
                offset =  burst_start - floor((GUARD_PERIOD) * d_OSR);                         //compute offset from burst_start - burst should start after a guard period
                DCOUT(offset);
                to_consume += offset;                                                          //adjust with offset number of samples to be consumed
              }
            }
            break;

          case normal_burst:                                                                  //if it's normal burst
            burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TRAIN_SEARCH_RANGE, d_bcc); //get channel impulse response for given training sequence number - d_bcc
            detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);            //MLSE detection of bits
            process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
            break;

          case rach_burst:
            //implementation of this channel isn't possible in current gsm_receiver
            //it would take some realtime processing, counter of samples from USRP to
            //stay synchronized with this device and possibility to switch frequency from  uplink
            //to C0 (where sch is) back and forth

            break;
          case dummy:                                                         //if it's dummy
            burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TRAIN_SEARCH_RANGE, TS_DUMMY); //read dummy
            detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);   // but as far as I know it's pointless
            break;
          case empty:   //if it's empty burst
            break;      //do nothing
        }

        d_burst_nr++;   //go to next burst

        to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset();  //consume samples of the burst up to next guard period
        //and add offset which is introduced by
        //0.25 fractional part of a guard period
        //burst_number computes this offset
        //but choice of this class to do this was random
        consume_each(to_consume);
      }
      break;
  }

  return produced_out;
}

bool gsm_receiver_cf::find_fcch_burst(const gr_complex *input, const int nitems)
{
  circular_buffer_float phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find
  //best match for FCCH burst
  float phase_diff = 0;
  gr_complex conjprod;
  int start_pos = -1;
  int hit_count = 0;
  int miss_count = 0;
  float min_phase_diff;
  float max_phase_diff;
  double best_sum = 0;
  float lowest_max_min_diff = 99999;

  int to_consume = 0;
  int sample_number = 0;
  bool end = false;
  bool result = false;
  circular_buffer_float::iterator buffer_iter;

  /**@name Possible states of FCCH search algorithm*/
  //@{
  enum states {
    init,               ///< initialize variables
    search,             ///< search for positive samples
    found_something,    ///< search for FCCH and the best position of it
    fcch_found,         ///< when FCCH was found
    search_fail         ///< when there is no FCCH in the input vector
  } fcch_search_state;
  //@}

  fcch_search_state = init;

  while (!end) {
    switch (fcch_search_state) {

      case init: //initialize variables
        hit_count = 0;
        miss_count = 0;
        start_pos = -1;
        lowest_max_min_diff = 99999;
        phase_diff_buffer.clear();
        fcch_search_state = search;

        break;

      case search: // search for positive samples
        sample_number++;

        if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR) { //if it isn't possible to find FCCH because
          //there's too few samples left to look into,
          to_consume = sample_number;                            //don't do anything with those samples which are left
          //and consume only those which were checked
          fcch_search_state = search_fail;
        } else {
          phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);

          if (phase_diff > 0) {                                 //if a positive phase difference was found
            to_consume = sample_number;
            fcch_search_state = found_something;                //switch to state in which searches for FCCH
          } else {
            fcch_search_state = search;
          }
        }

        break;

      case found_something: {// search for FCCH and the best position of it
          if (phase_diff > 0) {
            hit_count++;       //positive phase differencies increases hits_count
          } else {
            miss_count++;      //negative increases miss_count
          }

          if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) {
            //if miss_count exceeds limit before hit_count
            fcch_search_state = init;       //go to init
            continue;
          } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) {
            //if hit_count and miss_count exceeds limit then FCCH was found
            fcch_search_state = fcch_found;
            continue;
          } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) {
            //find difference between minimal and maximal element in the buffer
            //for FCCH this value should be low
            //this part is searching for a region where this value is lowest
            min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
            max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));

            if (lowest_max_min_diff > max_phase_diff - min_phase_diff) {
              lowest_max_min_diff = max_phase_diff - min_phase_diff;
              start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos
              best_sum = 0;

              for (buffer_iter = phase_diff_buffer.begin();
                   buffer_iter != (phase_diff_buffer.end());
                   buffer_iter++) {
                best_sum += *buffer_iter - (M_PI / 2) / d_OSR;   //store best value of phase offset sum
              }
            }
          }

          sample_number++;

          if (sample_number >= nitems) {    //if there's no single sample left to check
            fcch_search_state = search_fail;//FCCH search failed
            continue;
          }

          phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
          phase_diff_buffer.push_back(phase_diff);
          fcch_search_state = found_something;
        }
        break;

      case fcch_found: {
          DCOUT("fcch found on position: " << d_counter + start_pos);
          to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst

          d_fcch_start_pos = d_counter + start_pos;

          //compute frequency offset
          double phase_offset = best_sum / FCCH_HITS_NEEDED;
          double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
          d_freq_offset -= freq_offset;
          DCOUT("freq_offset: " << d_freq_offset);

          end = true;
          result = true;
          break;
        }

      case search_fail:
        end = true;
        result = false;
        break;
    }
  }

  d_counter += to_consume;
  consume_each(to_consume);

  return result;
}

double gsm_receiver_cf::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample)
{
  double phase_sum = 0;
  unsigned ii;

  for (ii = first_sample; ii < last_sample; ii++) {
    double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR;
    phase_sum += phase_diff;
  }

  double phase_offset = phase_sum / (last_sample - first_sample);
  double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
  return freq_offset;
}

void gsm_receiver_cf::set_frequency(double freq_offset)
{
  d_tuner->calleval(freq_offset);
}

inline float gsm_receiver_cf::compute_phase_diff(gr_complex val1, gr_complex val2)
{
  gr_complex conjprod = val1 * conj(val2);
  return gr_fast_atan2f(imag(conjprod), real(conjprod));
}

bool gsm_receiver_cf::reach_sch_burst(const int nitems)
{
  //it just consumes samples to get near to a SCH burst
  int to_consume = 0;
  bool result = false;
  unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;

  //consume samples until d_counter will be equal to sample_nr_near_sch_start
  if (d_counter < sample_nr_near_sch_start) {
    if (d_counter + nitems >= sample_nr_near_sch_start) {
      to_consume = sample_nr_near_sch_start - d_counter;
    } else {
      to_consume = nitems;
    }
    result = false;
  } else {
    to_consume = 0;
    result = true;
  }

  d_counter += to_consume;
  consume_each(to_consume);
  return result;
}

int gsm_receiver_cf::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp)
{
  vector_complex correlation_buffer;
  vector_float power_buffer;
  vector_float window_energy_buffer;

  int strongest_window_nr;
  int burst_start = 0;
  int chan_imp_resp_center = 0;
  float max_correlation = 0;
  float energy = 0;

  for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++) {
    gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]);
    correlation_buffer.push_back(correlation);
    power_buffer.push_back(pow(abs(correlation), 2));
  }

  //compute window energies
  vector_float::iterator iter = power_buffer.begin();
  bool loop_end = false;
  while (iter != power_buffer.end()) {
    vector_float::iterator iter_ii = iter;
    energy = 0;

    for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++) {
      if (iter_ii == power_buffer.end()) {
        loop_end = true;
        break;
      }
      energy += (*iter_ii);
    }
    if (loop_end) {
      break;
    }
    iter++;
    window_energy_buffer.push_back(energy);
  }

  strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
//   d_channel_imp_resp.clear();

  max_correlation = 0;
  for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++) {
    gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
    if (abs(correlation) > max_correlation) {
      chan_imp_resp_center = ii;
      max_correlation = abs(correlation);
    }
//     d_channel_imp_resp.push_back(correlation);
    chan_imp_resp[ii] = correlation;
  }

  burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR;
  return burst_start;
}

void gsm_receiver_cf::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
{
  float output[BURST_SIZE];
  gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR];
  gr_complex rhh[CHAN_IMP_RESP_LENGTH];
  gr_complex filtered_burst[BURST_SIZE];
  int start_state = 3;
  unsigned int stop_states[2] = {4, 12};

  autocorrelation(chan_imp_resp, rhh_temp, d_chan_imp_length*d_OSR);
  for (int ii = 0; ii < (d_chan_imp_length); ii++) {
    rhh[ii] = conj(rhh_temp[ii*d_OSR]);
  }

  mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);

  viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output);

  for (int i = 0; i < BURST_SIZE ; i++) {
    output_binary[i] = (output[i] > 0);
  }
}

//TODO consider placing this funtion in a separate class for signal processing
void gsm_receiver_cf::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point)
{
  gr_complex j = gr_complex(0.0, 1.0);

  int current_symbol;
  int encoded_symbol;
  int previous_symbol = 2 * input[0] - 1;
  gmsk_output[0] = start_point;

  for (int i = 1; i < nitems; i++) {
    //change bits representation to NRZ
    current_symbol = 2 * input[i] - 1;
    //differentially encode
    encoded_symbol = current_symbol * previous_symbol;
    //and do gmsk mapping
    gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1];
    previous_symbol = current_symbol;
  }
}

//TODO consider use of some generalized function for correlation and placing it in a separate class  for signal processing
gr_complex gsm_receiver_cf::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input)
{
  gr_complex result(0.0, 0.0);
  int sample_number = 0;

  for (int ii = 0; ii < length; ii++) {
    sample_number = (ii * d_OSR) ;
    result += sequence[ii] * conj(input[sample_number]);
  }

  result = result / gr_complex(length, 0);
  return result;
}

//computes autocorrelation for positive arguments
//TODO consider placing this funtion in a separate class for signal processing
inline void gsm_receiver_cf::autocorrelation(const gr_complex * input, gr_complex * out, int nitems)
{
  int i, k;
  for (k = nitems - 1; k >= 0; k--) {
    out[k] = gr_complex(0, 0);
    for (i = k; i < nitems; i++) {
      out[k] += input[i] * conj(input[i-k]);
    }
  }
}

//TODO consider use of some generalized function for filtering and placing it in a separate class  for signal processing
inline void gsm_receiver_cf::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output)
{
  int ii = 0, n, a;

  for (n = 0; n < nitems; n++) {
    a = n * d_OSR;
    output[n] = 0;
    ii = 0;

    while (ii < filter_length) {
      if ((a + ii) >= nitems*d_OSR)
        break;
      output[n] += input[a+ii] * filter[ii];
      ii++;
    }
  }
}

int gsm_receiver_cf::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, unsigned search_range, int bcc)
{
  vector_complex correlation_buffer;
  vector_float power_buffer;
  vector_float window_energy_buffer;

  int strongest_window_nr;
  int burst_start = 0;
  int chan_imp_resp_center = 0;
  float max_correlation = 0;
  float energy = 0;

  int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR);
  int search_start_pos = search_center + 1;
  int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR;

  for (int ii = search_start_pos; ii < search_stop_pos; ii++) {
    gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]);

    correlation_buffer.push_back(correlation);
    power_buffer.push_back(pow(abs(correlation), 2));
  }

  //compute window energies
  vector_float::iterator iter = power_buffer.begin();
  bool loop_end = false;
  while (iter != power_buffer.end()) {
    vector_float::iterator iter_ii = iter;
    energy = 0;

    for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++, iter_ii++) {
      if (iter_ii == power_buffer.end()) {
        loop_end = true;
        break;
      }
      energy += (*iter_ii);
    }
    if (loop_end) {
      break;
    }
    iter++;

    window_energy_buffer.push_back(energy);
  }

  strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
//   d_channel_imp_resp.clear();

  max_correlation = 0;
  for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++) {
    gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
    if (abs(correlation) > max_correlation) {
      chan_imp_resp_center = ii;
      max_correlation = abs(correlation);
    }
//     d_channel_imp_resp.push_back(correlation);
    chan_imp_resp[ii] = correlation;
  }
  // We want to use the first sample of the impulseresponse, and the
  // corresponding samples of the received signal.
  // the variable sync_w should contain the beginning of the used part of
  // training sequence, which is 3+57+1+6=67 bits into the burst. That is
  // we have that sync_t16 equals first sample in bit number 67.

  burst_start = search_start_pos + chan_imp_resp_center + strongest_window_nr - TRAIN_POS * d_OSR;

  // GMSK modulator introduces ISI - each bit is expanded for 3*Tb
  // and it's maximum value is in the last bit period, so burst starts
  // 2*Tb earlier
  burst_start -= 2 * d_OSR;
  burst_start += 2;
  //std::cout << " burst_start: " << burst_start << " center: " << ((float)(search_start_pos + strongest_window_nr + chan_imp_resp_center)) / d_OSR << " stronegest window nr: " <<  strongest_window_nr << "\n";

  return burst_start;

}

personal git repositories of Harald Welte. Your mileage may vary