1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
/* ----------------------------------------------------------------------------
* ATMEL Microcontroller Software Support
* ----------------------------------------------------------------------------
* Copyright (c) 2008, Atmel Corporation
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
*
* Atmel's name may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ----------------------------------------------------------------------------
*/
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include <board.h>
#include <adc/adc12.h>
#include <utility/trace.h>
#include <utility/assert.h>
//------------------------------------------------------------------------------
// Global Functions
//------------------------------------------------------------------------------
//-----------------------------------------------------------------------------
/// Initialize the ADC controller
/// \param pAdc Pointer to an AT91S_ADC instance.
/// \param trgEn trigger mode, software or Hardware
/// \param trgSel hardware trigger selection
/// \param sleepMode sleep mode selection
/// \param resolution resolution selection 8 bits or 10 bits
/// \param mckClock value of MCK in Hz
/// \param adcClock value of the ADC clock in Hz
/// \param startupTime value of the start up time (in us) (see datasheet)
/// \param sampleAndHoldTime (in ns)
//-----------------------------------------------------------------------------
void ADC12_Initialize (AT91S_ADC12B *pAdc,
unsigned char idAdc,
unsigned char trgEn,
unsigned char trgSel,
unsigned char sleepMode,
unsigned char resolution,
unsigned int mckClock,
unsigned int adcClock,
unsigned int startupTime,
unsigned int sampleAndHoldTime)
{
unsigned int prescal;
unsigned int startup;
unsigned int shtim;
ASSERT(startupTime<=ADC_STARTUP_TIME_MAX, "ADC Bad startupTime\n\r");
ASSERT(sampleAndHoldTime>=ADC_TRACK_HOLD_TIME_MIN, "ADC Bad sampleAndHoldTime\n\r");
// Example:
// 5 MHz operation, 20µs startup time, 600ns track and hold time
// PRESCAL: Prescaler Rate Selection ADCClock = MCK / ( (PRESCAL+1) * 2 )
// PRESCAL = [MCK / (ADCClock * 2)] -1 = [48/(5*2)]-1 = 3,8
// PRESCAL = 4 -> 48/((4+1)*2) = 48/10 = 4.8MHz
// 48/((3+1)*2) = 48/8 = 6MHz
// Startup Time = (STARTUP+1) * 8 / ADCClock
// STARTUP = [(Startup Time * ADCClock)/8]-1 = [(20 10e-6 * 5000000)/8]-1 = 11,5
// STARTUP = 11 -> (11+1)*8/48000000 = 96/4800000 = 20us
//
// Sample & Hold Time = (SHTIM) / ADCClock
// SHTIM = (HoldTime * ADCClock)-1 = (600 10e-9 * 5000000) = 3
// SHTIM = 3 -> (3)/4800000 = 1/1600000 = 625ns
prescal = (mckClock / (2*adcClock)) - 1;
startup = ((adcClock/1000000) * startupTime / 8) - 1;
shtim = (((adcClock/1000000) * sampleAndHoldTime)/1000);
ASSERT( (prescal<0x3F), "ADC12 Bad PRESCAL\n\r");
ASSERT(startup<0x7F, "ADC12 Bad STARTUP\n\r");
ASSERT(shtim<0xF, "ADC12 Bad SampleAndHoldTime\n\r");
TRACE_DEBUG("adcClock:%d MasterClock:%d\n\r", (mckClock/((prescal+1)*2)), mckClock);
TRACE_DEBUG("prescal:0x%X startup:0x%X shtim:0x%X\n\r", prescal, startup, shtim);
if( adcClock != (mckClock/((prescal+1)*2)) ) {
TRACE_WARNING("User and calculated adcClocks are different : user=%d calc=%d\n\r",
adcClock, (mckClock/((prescal+1)*2)));
}
// Enable peripheral clock
AT91C_BASE_PMC->PMC_PCER = 1 << idAdc;
// Reset the controller
ADC12_SoftReset(pAdc);
// Write to the MR register
ADC12_CfgModeReg( pAdc,
( trgEn & AT91C_ADC12B_MR_TRGEN)
| ( trgSel & AT91C_ADC12B_MR_TRGSEL)
| ( resolution & AT91C_ADC12B_MR_LOWRES)
| ( sleepMode & AT91C_ADC12B_MR_SLEEP)
| ( (prescal<<8) & AT91C_ADC12B_MR_PRESCAL)
| ( (startup<<16) & AT91C_ADC12B_MR_STARTUP)
| ( (shtim<<24) & AT91C_ADC12B_MR_SHTIM) );
}
//-----------------------------------------------------------------------------
/// Return the Channel Converted Data
/// \param pAdc Pointer to an AT91S_ADC instance.
/// \param channel channel to get converted value
/// \return Channel converted data of the specified channel
//-----------------------------------------------------------------------------
unsigned int ADC12_GetConvertedData(AT91S_ADC12B *pAdc, unsigned int channel)
{
unsigned int data=0;
ASSERT(channel < 8, "ADC channel %u not exist", channel);
switch(channel) {
case 0: data = pAdc->ADC12B_CDR[0]; break;
case 1: data = pAdc->ADC12B_CDR[1]; break;
case 2: data = pAdc->ADC12B_CDR[2]; break;
case 3: data = pAdc->ADC12B_CDR[3]; break;
case 4: data = pAdc->ADC12B_CDR[4]; break;
case 5: data = pAdc->ADC12B_CDR[5]; break;
case 6: data = pAdc->ADC12B_CDR[6]; break;
case 7: data = pAdc->ADC12B_CDR[7]; break;
default: printf("\n\r Channel is not available!\n\r");
}
return data;
}
//-----------------------------------------------------------------------------
/// Test if ADC Interrupt is Masked
/// \param pAdc Pointer to an AT91S_ADC instance.
/// \param flag flag to be tested
/// \return 1 if interrupt is masked, otherwise 0
//-----------------------------------------------------------------------------
unsigned int ADC12_IsInterruptMasked(AT91S_ADC12B *pAdc, unsigned int flag)
{
return (ADC12_GetInterruptMaskStatus(pAdc) & flag);
}
//-----------------------------------------------------------------------------
/// Test if ADC Status is Set
/// \param pAdc Pointer to an AT91S_ADC instance.
/// \param flag flag to be tested
/// \return 1 if the staus is set; 0 otherwise
//-----------------------------------------------------------------------------
unsigned int ADC12_IsStatusSet(AT91S_ADC12B *pAdc, unsigned int flag)
{
return (ADC12_GetStatus(pAdc) & flag);
}
//-----------------------------------------------------------------------------
/// Test if ADC channel interrupt Status is Set
/// \param adc_sr Value of SR register
/// \param channel Channel to be tested
/// \return 1 if interrupt status is set, otherwise 0
//-----------------------------------------------------------------------------
unsigned char ADC12_IsChannelInterruptStatusSet(unsigned int adc_sr,
unsigned int channel)
{
unsigned char status;
if((adc_sr & (1<<channel)) == (1<<channel)) {
status = 1;
}
else {
status = 0;
}
return status;
}
|